
Oracle9 i Application Server

Oracle9iAS SOAP Developer’s Guide

Release 1 (v1.0.2.2)

May 2001

Part No. A90297-01

Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide, Release 1 (v1.0.2.2)

Part No. A90297-01

Copyright © 2001, Oracle Corporation. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Julie Basu, Diane Davison, Anish Karmarkar, Olivier LeDiouris, Steve Muench, Cyril
Scott

Editor: Kay Kaufmann

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. Other names may be trademarks of their
respective owners.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Contents

Send Us Your Comments .. vii

Preface .. ix

1 Simple Object Access Protocol Overview

What Is the Simple Object Access Protocol? ... 1-2
How Does SOAP Work? .. 1-3
Why Use SOAP?.. 1-5
What Is Oracle SOAP? ... 1-6

Client Application and Client API ... 1-8
SOAP Client API.. 1-8
Oracle SOAP Security Features ... 1-8

SOAP Transports .. 1-8
Administrative Clients... 1-9
SOAP Request Handler ... 1-9
SOAP Provider Interface and Providers ... 1-9

Provider Interface.. 1-9
Provider Deployment Administration ... 1-9

SOAP Services ... 1-9
iii

2 Using Oracle SOAP with Java Services

Writing a SOAP Java Service .. 2-2
Specifying a Package Name for the Service .. 2-2
Defining Java Methods... 2-3

Serializing and Encoding Parameters and Results ... 2-3
Returning a Result .. 2-5

Deploying a SOAP Java Service... 2-5
Creating a Java Service Deployment Descriptor.. 2-6
Adding Service Classes to the SOAP CLASSPATH .. 2-7
Using the Service Manager to Deploy and Undeploy Java Services..................................... 2-7
Using the Service Manager to Verify or Query Java Services .. 2-8

Writing a SOAP Java Client .. 2-8
Specifying a Package Name Java Clients .. 2-9
Importing for Java Clients ... 2-9
Defining a Request.. 2-9
Setting Up a Call to Request a Service ... 2-10

Serializing and Encoding Java Parameters and Results .. 2-11
Invoking a Call to Request a Service.. 2-11
Waiting for a Response and Handling SOAP Faults... 2-12
Running a Client ... 2-12
Using Security Features with a Client ... 2-13

SOAP Troubleshooting .. 2-15
Tunneling Using the TcpTunnelGui Command .. 2-16
Setting Configuration Options for Debugging... 2-16
Using DMS to Display Runtime Information... 2-17

3 SOAP Parameters and Encodings

Writing a SOAP Java Service Using User-Defined Types ... 3-2
Specifying a Package Name for the Service .. 3-2
Defining Java Methods Using Parameters with User-Defined Types 3-2
Serializing Java Parameters and Results Using BeanSerializer.. 3-3

Writing JavaBean Support Routines for User-Defined Types .. 3-3
Adding Compiled JavaBean Classes to the CLASSPATH... 3-4
iv

Returning Results to the Request Handler Servlet .. 3-5
Encoding Java Parameters and Results.. 3-6

Deploying a SOAP Java Service Using User-Defined Types ... 3-6
Developing a SOAP Java Client Using Parameters ... 3-8

Creating Parameters to Pass to a Service .. 3-8
Handling Encoding, Serialization, and Mapping with Parameters 3-9
Setting Up a Call to Request a Service with Parameters... 3-9
Invoking a Call to Request a Service with Parameters ... 3-10
Running a Client with Parameters... 3-11

Writing a SOAP Service Using Arrays as Parameters.. 3-11
Server-Side Adjustments for Using Arrays as Parameters... 3-12
Client-Side Adjustments for Using Arrays as Parameters ... 3-12

Writing a SOAP Service Using Literal XML Encoding ... 3-13
Server-Side Adjustments for Using Literal XML Encoding ... 3-13

Creating a Return Value with Literal XML Encoding ... 3-13
Client-Side Adjustments for Using Literal XML Encoding.. 3-14

Specifying a Call with Literal XML Encoding... 3-14
Invoking a Call with Literal XML Encoding ... 3-14

4 SOAP Audit Logging

Audit Logging Information .. 4-2
Audit Logging Output... 4-2

Auditable Events... 4-2
Audit Logging Filters... 4-3

Configuring the Audit Logger .. 4-5

5 SOAP Handlers

Handler Overview .. 5-2
Request Handlers.. 5-2
Response Handlers ... 5-2
Error Handlers ... 5-2
Configuring Handlers .. 5-3
v

6 Writing SOAP Providers

Provider Interface Overview... 6-2
Implementing a Provider Interface ... 6-2

Implementing Provider Interface Methods .. 6-3
Working with the Provider init() Method.. 6-3
Working with the Provider invoke() Method ... 6-3
Working with the Provider destroy() Method .. 6-6
Working with the Provider getId() Method .. 6-6

Handling Provider Deployment .. 6-7
Updating the Provider Deployment Descriptor Schema.. 6-7
Updating the Service Deployment Descriptor Schema... 6-8

7 Writing Deployment Managers

Creating a Provider Manager.. 7-1
Creating a Service Manager .. 7-2

8 SOAP Administration

Configuring the Request Handler Servlet.. 8-2
Setting Provider Manager and Service Manager Configuration Options 8-3

Using Auto Start Mode .. 8-4
Setting Jserv Configuration and Security... 8-5
Changing the HTTP Listener Port Number ... 8-5
Configuring Memory Options .. 8-5

A Apache Software License, Version 1.1

Index
vi

Send Us Your Comments

Oracle9 i Application Server Oracle9 iAS SOAP Developer’s Guide, Release 1 (v1.0.2.2)

Part No. A90297-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: iasdocs_us@oracle.com

■ Postal service:

Oracle Corporation

Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

500 Oracle Parkway M/S 6op4

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

The Simple Object Access Protocol (SOAP), is a lightweight, XML-based protocol

for exchanging information in a decentralized, distributed environment. This guide

describes Oracle SOAP. Oracle SOAP is an implementation of the Simple Object

Access Protocol that is based on the Apache SOAP open source implementation.

This preface contains the following topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
ix

Audience
The Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide is intended

for application programmers, system administrators, and other users who perform

the following tasks:

■ Configure software installed on the Oracle9i Application Server

■ Create programs that implement SOAP services

■ Create Java programs that run as SOAP clients

To use this document, you need a working knowledge of Java programming

language fundamentals.

Organization
This document contains:

Chapter 1, "Simple Object Access Protocol Overview"
This chapter introduces the basic concepts for the Simple Object Access Protocol

and provides a description of the SOAP architecture.

Chapter 2, "Using Oracle SOAP with Java Services"
This chapter provides an introduction to the procedures you use to write a SOAP

Java service, to deploy the service, and to write a SOAP Java client that uses the

service. The code examples in this chapter use the simple clock sample supplied

with the Oracle SOAP installation.

Chapter 3, "SOAP Parameters and Encodings"
This chapter describes the procedures you use to write a SOAP Java service, to

deploy the service, and to write a SOAP Java client for a service that uses arrays and

other nonscalar types for parameters or return values. In addition, this chapter

provides information on SOAP encodings.

Chapter 4, "SOAP Audit Logging"
This chapter describes the Oracle SOAP Audit Logging feature that monitors and

records SOAP usage. Audit logging maintains records for postmortem analysis,

accountability, and security. SOAP audit logging complements the audit logging

capabilities available with the transport-specific server, the Apache HTTP Listener,

that hosts the SOAP Request Handler Servlet (SOAP server).
x

Chapter 5, "SOAP Handlers"
The chapter describes Oracle SOAP handlers for the SOAP Request Handler Servlet.

Handlers are configured in handler chains. Handlers are invoked to handle events

associated with SOAP requests, responses, or errors.

Chapter 6, "Writing SOAP Providers"
This chapter describes the Oracle SOAP provider interface. The provider interface

allows you to add your own service providers to Oracle SOAP.

Chapter 7, "Writing Deployment Managers"
This chapter describes advanced SOAP features, including the interfaces available

for creating a Provider Manager and a Service Manager.

Chapter 8, "SOAP Administration"
This chapter describes configuration and administration details for Oracle SOAP.

Appendix A, "Apache Software License, Version 1.1"
This appendix contains the Apache software license.

Related Documentation
For more information, see the Overview Guide in the Oracle9i Application Server

Documentation Library.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from,

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at,

http://technet.oracle.com/membership/index.htm
xi

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at,

http://technet.oracle.com/docs/index.htm

For additional information, see:

■ http://www.w3.org/TR/SOAP for information on the Simple Object Access

Protocol (SOAP) 1.1 specification

■ http://www.w3.org/XML/Schema for information on XML schema

■ http://www.w3.org/Addressing for information on URIs, naming, and

addressing

■ http://www.javasoft.com/products/javabeans/docs for information

on JavaBeans

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.
xii

Conventions in Code Examples
Code examples illustrate command-line statements. They are displayed in a

monospace (fixed-width) font and are separated from normal text as shown in this

example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xiii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;
xiv

Documentation Accessibility
Oracle's goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

technology vendors to address technical obstacles so that our documentation can be

accessible to all of our customers. For additional information, visit the Oracle

Accessibility Program Web site at

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples

in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a

line of text that consists solely of a bracket or brace.
xv

xvi

Simple Object Access Protocol Ove
1

Simple Object Access Protocol Overview

This chapter provides an overview of the Simple Object Access Protocol (SOAP),

and includes a description of the architecture of the Oracle SOAP implementation.

This chapter covers the following topics:

■ What Is the Simple Object Access Protocol?

■ How Does SOAP Work?

■ Why Use SOAP?

■ What Is Oracle SOAP?
rview 1-1

What Is the Simple Object Access Protocol?
What Is the Simple Object Access Protocol?
The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for

exchanging information in a decentralized, distributed environment. By combining

SOAP-based requests and responses with a transport protocol, such as HTTP, the

Internet becomes a medium for applications to publish database-backed Web
services, such as:

■ Restaurant listings: Which sushi bars are within five blocks of the Geary

Theatre?

■ Car dealer inquiries: What California dealers have a denim blue Audi TT coupe

in stock?

■ Financial information requests: What stocks in my portfolio are below their

50-day average?

■ Ticket bookings: What are the two best seats available for Miss Saigon next

week?

SOAP has a looser coupling between the client and the server than some similar

distributed computing protocols, such as CORBA/IIOP, and it provides easier

communication for a client and server that use different languages. SOAP exposes a

standard way for processes to communicate, yet it leverages existing technologies.

SOAP requests are easy to generate, and a client can easily process the responses.

One application can become a programmatic client of another application's services,

with each exchanging rich, structured information. The ability to aggregate
powerful, distributed Web services allows SOAP to provide a robust programming

model that turns the Internet into an application development platform.

SOAP has the following features:

■ Protocol independence

■ Language independence

■ Platform and operating system independence

See Also: http://www.w3.org/TR/SOAP for information on

Simple Object Access Protocol (SOAP) 1.1 specification
1-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

How Does SOAP Work?
How Does SOAP Work?
The SOAP specification describes a standard, XML-based way to encode requests

and responses, including:

■ Requests to invoke a method on a service, including in parameters

■ Responses from a service method, including return value and out parameters

■ Errors from a service

SOAP describes the structure and data types of message payloads by using the

emerging W3C XML Schema standard issued by the World Wide Web Consortium

(W3C). SOAP is a transport-agnostic messaging system; SOAP requests and

responses travel using HTTP, HTTPS, or some other transport mechanism.

Figure 1–1 illustrates the components in the SOAP architecture. In general, a SOAP

service remote procedure call (RPC) request/response sequence includes the

following steps:

1. A SOAP client formulates a request for a service. This involves creating a

conforming XML document, either explicitly or using Oracle SOAP client API.

2. A SOAP client sends the XML document to a SOAP server. This SOAP request is

posted using HTTP or HTTPS to a SOAP Request Handler running as a servlet

on a Web server. Example 1–1 shows the body of a SOAP message, an XML

document, that represents a SOAP request for a service that provides an

address from an address book.

3. The Web server receives the SOAP message, an XML document, using the

SOAP Request Handler Servlet. The server then dispatches the message as a

service invocation to an appropriate server-side application providing the

requested service.

4. A response from the service is returned to the SOAP Request Handler Servlet

and then to the caller using the standard SOAP XML payload format.

Example 1–2 contains the body of a response to the request made in

Example 1–1.

See Also:

■ http://www.w3.org/TR/SOAP

■ http://www.w3.org/XML/Schema for information on XML

Schema
Simple Object Access Protocol Overview 1-3

How Does SOAP Work?
Figure 1–1 Components of the SOAP Architecture

The SOAP specification does not describe how the SOAP server should handle the

content of the SOAP message body. The content of the body may be handed to a

SOAP service, depending on the SOAP server implementation.

Example 1–1 SOAP Request for Address Book Listing Service

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getAddressFromName xmlns:ns1="urn:www-oracle-com:AddressBook"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<nameToLookup xsi:type="xsd:string" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
John B. Good
</nameToLookup>
</ns1:getAddressFromName>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Internet

Firewall Firewall SOAP Client SOAP Service

SOAP Request

SOAP Response

SOAP
Server
1-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Why Use SOAP?
Example 1–2 SOAP Response from Address Book Service

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getAddressFromNameResponse xmlns:ns1="urn:www-oracle-com:AddressBook"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="urn:xml-soap-address-demo" xsi:type="ns2:address">
<city xsi:type="xsd:string">Anytown
</city>
<state xsi:type="xsd:string">NY
</state>
<phoneNumber xsi:type="ns2:phone">
<areaCode xsi:type="xsd:int">123
</areaCode>
<number xsi:type="xsd:string">7890
</number>
<exchange xsi:type="xsd:string">456
</exchange>
</phoneNumber>
<streetName xsi:type="xsd:string">Main Street
</streetName>
<zip xsi:type="xsd:int">12345</zip>
<streetNum xsi:type="xsd:int">123
</streetNum>
</return>
</ns1:getAddressFromNameResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Why Use SOAP?
Why do we need a standard like SOAP? By exchanging XML documents over

HTTP, two programs can exchange rich, structured information without the

introduction of an additional standard such as SOAP to explicitly describe a

message envelope format and a way to encode structured content.

SOAP provides a standard so that developers do not have to invent a custom XML

message format for every service they want to make available. Given the signature

of the service method to be invoked, the SOAP specification prescribes an

unambiguous XML message format. Any developer familiar with the SOAP

specification, working in any programming language, can formulate a correct SOAP
Simple Object Access Protocol Overview 1-5

What Is Oracle SOAP?
XML request for a particular service and understand the response from the service

by obtaining the following service details.

■ Service name

■ Method names implemented by the service

■ Method signature of each method

■ Address of the service implementation (expressed as a URI)

Using SOAP streamlines the process for exposing an existing software component

as a Web service since the method signature of the service identifies the XML

document structure used for both the request and the response.

What Is Oracle SOAP?
Oracle SOAP is an implementation of the Simple Object Access Protocol. Oracle

SOAP is based on the SOAP open source implementation developed by the Apache

Software Foundation.

This section describes the Oracle SOAP components shown in Figure 1–2. The

topics covered include:

■ Client Application and Client API

■ SOAP Transports

■ Administrative Clients

■ SOAP Provider Interface and Providers

■ SOAP Services

See Also: http://www.w3.org/Addressing for information

on URIs, naming, and addressing

See Also: http://www.w3.org/TR/SOAP and

http://xml.apache.org/soap
1-6 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

What Is Oracle SOAP?
Figure 1–2 Oracle SOAP Architecture

Internet

Client
Application

SOAP
Transport

SOAP
Client API

Service and
Provider

Administration

SOAP
Transport

SOAP
Client API

Service
and

Provider
Configuration

SOAP
Transport

Request
Handler

Other
Provider

Java
Provider

Other
Services

Java
ServicesP

rovider
Interfac

Firewall
Simple Object Access Protocol Overview 1-7

What Is Oracle SOAP?
Client Application and Client API
A SOAP client application represents a user-written application that makes SOAP

requests. A SOAP client application may include the following:

■ SOAP Client API

■ Oracle SOAP Security Features

SOAP Client API
SOAP clients generate the XML documents that compose a request for a SOAP

service and handle the SOAP response. Oracle SOAP processes requests from any

client that sends a valid SOAP request. To facilitate client development, Oracle

SOAP includes a SOAP client API that provides a generic way to invoke a SOAP

service. The SOAP client API supports a synchronous invocation model for requests

and responses.

The SOAP client API makes it easier for you to write a Java client application to

make a SOAP request. The SOAP client API encapsulates the creation of the SOAP

request and the details of sending the request over the underlying transport

protocol. The SOAP client API also supports a pluggable transport, allowing the

client to easily change the transport (available transports include HTTP and

HTTPS).

Oracle SOAP Security Features
Oracle SOAP uses the security capabilities in the transport to support secure access

and to support other security features. For example, using HTTPS, Oracle SOAP

provides confidentiality, authentication, and integrity over the Secure Sockets Layer

(SSL). Other security features such as logging and authorization, are provided by

the service provider.

SOAP Transports
SOAP transports are the protocols that carry SOAP messages. Oracle SOAP

supports the following transports:

■ HTTP: This protocol is the basic SOAP transport. The Oracle SOAP Request

Handler Servlet manages HTTP requests and supplies responses directly over

HTTP.

■ HTTPS: The Oracle SOAP Request Handler Servlet manages HTTPS requests

and supplies responses, with different security levels supported.
1-8 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

What Is Oracle SOAP?
Administrative Clients
SOAP administrative clients include the Service Manager and the Provider

Manager. These administrative clients are services that support dynamic

deployment of new services and new providers.

SOAP Request Handler
The SOAP Request Handler is a Java servlet that receives SOAP requests, looks up

the appropriate service provider, handles the service provider that invokes the

requested method (service), and returns the SOAP response, if any.

SOAP Provider Interface and Providers
Oracle SOAP includes a provider implementation for Java classes. Other providers

can be added.

Provider Interface
The provider interface allows the SOAP server to uniformly invoke service methods

regardless of the type of provider (Java class, stored procedure, or some other

provider type). There is one provider interface implementation for each type of

service provider, and it encapsulates all provider-specific information. The provider

interface makes SOAP implementation easily extensible to support new types of

service providers.

Provider Deployment Administration
Oracle SOAP provides the provider deployment administration client to manage

provider deployment information.

SOAP Services
SOAP application developers provide SOAP services. These services are made

available using the supplied default Java class provider or custom providers. Oracle

SOAP includes a service deployment administration client that runs as a service to

manage services.

SOAP services, including Java services, represent user-written applications that are

provided to remote SOAP clients.
Simple Object Access Protocol Overview 1-9

What Is Oracle SOAP?
1-10 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Using Oracle SOAP with Java Se
2

Using Oracle SOAP with Java Services

This chapter provides an introduction to the procedures you use to write a SOAP

Java service, to deploy the service, and to write a SOAP Java client that uses the

service. Code examples in this chapter, use the simple clock sample supplied with

the Oracle SOAP installation. Very little setup is required before you can use Oracle

SOAP with Java clients. Using Oracle SOAP, you can easily make requests for

SOAP services and generate replies from SOAP services.

A Java service runs on a SOAP server as part of the Oracle SOAP Java Provider. The

Java service handles requests generated by a SOAP client.

This chapter covers the following topics:

■ Writing a SOAP Java Service

■ Deploying a SOAP Java Service

■ Writing a SOAP Java Client

■ SOAP Troubleshooting

Note: This chapter does not cover the SOAP message envelope,

the HTTP protocol used for transport, or the XML that the Oracle

SOAP Java Provider and the SOAP Request Handler Servlet pass

from or to a SOAP client. Rather, the focus here is on the service

request that the client generates using Java, and the return value

that the service generates.
rvices 2-1

Writing a SOAP Java Service
Writing a SOAP Java Service
Writing a SOAP Java service involves building a Java class that includes one or

more methods that generate data used as responses to incoming calls. Normally a

service is a method that can run independently of SOAP. There are very few

restrictions on what actions a SOAP service can perform. At a minimum, most

SOAP services generate some data or perform an action.

This section shows how to build a service that returns the current date and time.

The clock service takes a SOAP request for a service and generates a response with

a return value representing the date (a String).

The complete simple clock service is supplied with Oracle SOAP in the directory

$SOAP_HOME/samples/simpleclock on UNIX or in %SOAP_
HOME%\samples\simpleclock on Windows NT.

Developing a SOAP Java service consists of the following steps:

■ Specifying a Package Name for the Service

■ Defining Java Methods

■ Returning a Result

Specifying a Package Name for the Service
Create a SOAP Java service by writing a class with methods that are deployed as a

SOAP service. The Oracle SOAP Java Provider runs these methods in response to a

request issued by the SOAP Request Handler Servlet. When looking at the simple

clock service supplied with Oracle SOAP, note that the single jar file,

samples.jar , contains a package, samples , that includes several samples. For the

SOAP server installation the jar file is in the directory $SOAP_
HOME/webapps/soap/WEB-INF/lib on UNIX or in %SOAP_
HOME%\webapps\soap\WEB-INF\lib on Windows NT. For the SOAP client

installation, the jar file is in the directory $SOAP_HOME/lib on UNIX or in %SOAP_
HOME%\lib on Windows NT.

The class MySimpleClockService provides the simple clock service methods. If

you want to place the Java service in a package, use the Java package specification

to name the package. The first line of MySimpleClockService.java specifies the

package name as follows:

package samples.simpleclock;

See Also: "Deploying a SOAP Java Service" on page 2-5
2-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Java Service
Defining Java Methods
The simple clock service is implemented with SimpleClockService , a public

class. The service defines a single public method, getDate() , that supplies a date

as a String . In general, a SOAP Java service defines one or more methods. As

Example 2–1 shows, the SimpleClockService uses one public method,

getDate() .

Example 2–1 Defining Simple Clock Service Methods

public class SimpleClockService extends Object
{
 public SimpleClockService()
 {
 }
 public static String getDate()
 {
 .
 .
 }
}

Serializing and Encoding Parameters and Results
The getDate() method returns a String value. Parameters and results sent

between a client and a service go through the following steps:

1. Parameters are serialized and encoded in XML when sent from the client to a

service.

2. Parameters are deserialized and decoded from XML when the SOAP Request

Handler Servlet receives a service invocation request.

3. Parameters or results are serialized and encoded in XML when a request

returns from the SOAP Request Handler Servlet to a SOAP client.

4. Parameters or results must be deserialized and decoded from XML when the

client receives a reply.

Note: A Java implementation of a SOAP service must be a Java

class that defines a public method for each SOAP method that is

exposed as a SOAP service.
Using Oracle SOAP with Java Services 2-3

Writing a SOAP Java Service
Oracle SOAP supports a prepackaged implementation for handling these four steps

for serialization and encoding, and deserialization and decoding, of scalar and

user-defined types. Additionally, you can implement your own serialization and

encoding mechanism.

The prepackaged mechanism makes the four serialization and encoding steps easy

both for SOAP client-side applications, and for implementation of SOAP Java

services. Using the prepackaged mechanism, Oracle SOAP, as specified in the SOAP

client, supports the following encoding mechanisms:

■ Standard SOAP v.1.1 encoding: Using standard SOAP v1.1 encoding, the Java

Provider handles serialization and encoding internally for supported primitive
types supported by Oracle SOAP. Table 2–1 lists the primitive types. For

serializing and encoding complex types and user-defined types not found in

Table 2–1, the application programmer can use JavaBeans to support the

supplied BeanSerializer .

■ Literal XML encoding. Using Literal XML encoding, a Java client passes as a

parameter, or a Java service returns a result, that is encoded as a conforming

W3C Document Object Model (DOM) Element . When an Element passes as a

parameter to a SOAP service, the service processes the Element . For return

values sent from a SOAP service, the client parses and processes the element.

See Also:

■ "Setting Up a Call to Request a Service" on page 2-10

■ "Serializing Java Parameters and Results Using BeanSerializer"

on page 3-3

■ "Writing a SOAP Service Using Literal XML Encoding" on

page 3-13

Table 2–1 Types Supported with SOAP Using Default Java Encoding

Type Type

String long

int short

boolean arrays

double bytes (byte arrays)

float Hashtable

Vector Enumeration
2-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Deploying a SOAP Java Service
Returning a Result
The getDate() code segment shown in Example 2–2 gets a date and returns a

String value as a response. The Oracle SOAP Java Provider receives a request

from the SOAP Request Handler Servlet and calls the getDate() method. After

running, getDate() returns its result to the Oracle SOAP Java Provider. The

Oracle SOAP provider processes the return value and produces a SOAP envelope.

Finally, the SOAP Request Handler Servlet serializes the reply and sends a response

to the SOAP client. Example 2–2 shows that the Java service writer only needs to

return a String for the simple date service.

Example 2–2 Generate a Date and Return Result

public static String getDate()
{
 return (new java.util.Date()).toString();
}

When an error occurs while running a Java service, the service should throw an

exception, and the SOAP Request Handler Servlet then returns a SOAP fault. The

exception is sent to the log file when the logger is enabled and the severity value

is set to debug .

Deploying a SOAP Java Service
To deploy a SOAP service, you need to create a service deployment descriptor file

and deploy the service using the Service Manager utility.

This section covers the following topics:

■ Creating a Java Service Deployment Descriptor

■ Adding Service Classes to the SOAP CLASSPATH

■ Using the Service Manager to Deploy and Undeploy Java Services

■ Using the Service Manager to Verify or Query Java Services

See Also: "Setting Configuration Options for Debugging" on

page 2-16
Using Oracle SOAP with Java Services 2-5

Deploying a SOAP Java Service
Creating a Java Service Deployment Descriptor
A service deployment descriptor file is an XML file that defines configuration

information for the Java service. A service deployment descriptor file defines the

following information:

■ The service ID

■ The service provider type (for example, Java)

■ The available methods

Example 2–3 shows the SimpleClock service descriptor file

SimpleClockDescriptor.xml . This descriptor file is included in the

samples/simpleclock directory. The service descriptor file must conform to the

service descriptor schema (the schema, service.xsd , is located in the directory

$SOAP_HOME/schemas on UNIX or in %SOAP_HOME%\schemas on Windows NT).

The service descriptor file identifies methods associated with the service in the

isd:provider element that uses the methods attribute. The isd:java class
element identifies the Java class that implements the SOAP service, and provides an

indication of whether the class is static.

Example 2–3 Java Service Descriptor File for Simple Clock Service

<isd:service xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/service"
 id="urn:jurassic-clock"
 type="rpc" >
 <isd:provider
 id="java-provider"
 methods="getDate"
 scope="Application" >
 <isd:java class="samples.simpleclock.SimpleClockService"/>
 </isd:provider>
 <!-- includes stack trace in fault -->
 <isd:faultListener class="org.apache.soap.server.DOMFaultListener"/>
</isd:service>

Note: The service descriptor file does not define the method

signature for service methods. SOAP uses reflection to determine

method signatures.
2-6 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Deploying a SOAP Java Service
Adding Service Classes to the SOAP CLASSPATH
To deploy a SOAP Java service, the class that implements the service must be

available when Oracle SOAP starts. To add the class to the CLASSPATH, modify the

CLASSPATH for the SOAP Request Handler Servlet. Using the standard installation,

modify the file jservSoap.properties in the directory $ORACLE_
HOME/Apache/Jserv/etc on UNIX or in %ORACLE_
HOME%\Apache\Jserv\etc on Windows NT.

Using the Service Manager to Deploy and Undeploy Java Services
The ServiceManager is an administrative utility that deploys and undeploys

SOAP services.

To deploy the simple clock service, first set the SOAP environment, then use the

deploy command to deploy the SimpleClockService service. On UNIX, the

command is:

cd $SOAP_HOME/bin
source clientenv.csh
cd $SOAP_HOME/samples/simpleclock
ServiceManager.sh deploy SimpleClockDescriptor.xml

For Windows NT, the command is:

cd %SOAP_HOME%\bin
clientenv.bat
cd %SOAP_HOME%\samples\simpleclock
ServiceManager.bat deploy SimpleClockDescriptor.xml

When you are ready to undeploy a service, use the undeploy command with the

registered service name as an argument. On UNIX, the command is:

ServiceManager.sh undeploy urn:jurassic-clock

For Windows NT, the command is:

ServiceManager.bat undeploy urn:jurassic-clock
Using Oracle SOAP with Java Services 2-7

Writing a SOAP Java Client
Using the Service Manager to Verify or Query Java Services
The ServiceManager is an administrative utility that lists and queries SOAP

services. To list the available services, first set the SOAP environment, then use the

list command. One UNIX, the command is:

cd $SOAP_HOME/bin
source clientenv.csh
ServiceManager.sh list

On Windows NT, the command is:

cd %SOAP_HOME%\bin
clientenv.bat
ServiceManager.bat list

To query a service and obtain the descriptor parameters set in the service

deployment descriptor file, use the query command. On UNIX, the command is:

ServiceManager.sh query urn:jurassic-clock

On Windows NT, the command is:

ServiceManager.bat query urn:jurassic-clock

Writing a SOAP Java Client
After creating and deploying one or more SOAP services, client-side applications

can request service invocations. The example described in this section is a SOAP

client-side application that requests a date, using the simple clock service, and the

method GetDate() .

Developing a Java client-side SOAP application consists of the following steps:

■ Specifying a Package Name Java Clients

■ Importing for Java Clients

■ Defining a Request

■ Setting Up a Call to Request a Service

■ Invoking a Call to Request a Service

■ Waiting for a Response and Handling SOAP Faults

■ Running a Client

■ Using Security Features with a Client
2-8 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Java Client
Specifying a Package Name Java Clients
Use a SOAP Java service by making a SOAP request. The file

MySimpleClockClient.java shows a SOAP client that makes a SOAP request.

On UNIX, the directory $SOAP_HOME/samples/simpleclock contains this

source file; on Windows NT, %SOAP_HOME%\samples\simpleclock .

The first line of MySimpleClockClient.java specifies the package name for the

service that is added to samples.jar.

package samples.simpleclock;

Importing for Java Clients
The SOAP client-side application uses the following imports:

import org.apache.soap.rpc.Call;
import org.apache.soap.rpc.Response;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.Constants;
import org.apache.soap.SOAPException;
import java.net.URL;
import java.net.MalformedURLException;

The org.apache.soap.rpc imports for the SOAP client-side are discussed in the

following sections.

Defining a Request
The MySimpleClockClient class includes the SOAP request for the SOAP

getDate Java service. Example 2–4 shows the start of the client’s main() routine

that processes the command line argument.

Example 2–4 SOAP Client-Side Call Main Routine

public static void main(String[] args)
{
 if (args.length == 0)
 {
 System.out.println(
 "Usage is java samples.simpleclock.MySimpleClockClient SOAP_server_url");
 System.exit(1);
 }
 else
 {
Using Oracle SOAP with Java Services 2-9

Writing a SOAP Java Client
 try
 {
 URL url = new URL (args[0]);
 MySimpleClockClient soapClockClient = new MySimpleClockClient(url);
 }
 catch (MalformedURLException mue)
 {
 mue.printStackTrace();
 }
 }
}

Setting Up a Call to Request a Service
The package org.apache.soap.rpc contains the SOAP Call object. A SOAP

client-side request uses a Call object to build a request for a SOAP service. After

the SOAP request is created, it is invoked to enable the client API to pass the

request on to a SOAP server. Example 2–5 shows the code that builds a request for a

SOAP service invocation.

Example 2–5 Building a SOAP RPC Call

Call call = new Call();
call.setTargetObjectURI("urn:jurassic-clock");
call.setMethodName("getDate");
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

This code performs the following functions:

■ Creates the Call object.

■ Sets the Call object’s target URI which identifies the service.

■ Sets the Call object’s method name.

■ Sets the Call object’s encoding style.

■ Defines the Call object’s parameters. For this service, the Call object does not

set any parameters to send with the service request.

In addition, the Call object’s setTimeout() method sets the timeout, an integer

representing seconds, for a SOAP call. The default Call timeout, implicitly set in

this example specifies no timeout. Setting a timeout value of 0 also specifies no

timeout.
2-10 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Java Client
Serializing and Encoding Java Parameters and Results
Example 2–5 shows the client-side method that sets the default encoding style for

the service request setEncodingStyleURI . The simple clock service uses

standard SOAP v1.1 encoding.

In a client-side application, the SOAP API uses the encoding style set for the call to

serialize and encode any parameters that are sent to the SOAP service, unless a

specific encoding style is set for the parameter. For primitive types, the SOAP Java

client-side API handles serialization and encoding internally using the standard

SOAP encoding. For complex Java types, not found in Table 2–1, the application

programmer must supply serialization and encoding methods to the client-side

API.

Invoking a Call to Request a Service
Example 2–6 shows the Call object invoke() method that invokes the service at

the specified SOAP URL. A Response object handles any response. The URL that

you provide on the command line should be the URL for the SOAP Request

Handler Servlet. This value depends on where SOAP is deployed. For example, the

URL could be composed as follows:

http:// machineName: port /soap/servlet/soaprouter

Example 2–6 Making the SOAP RPC Call Invocation

Response resp = call.invoke(url, "");

See Also:

■ "Defining Java Methods Using Parameters with User-Defined

Types" on page 3-2

■ "Serializing Java Parameters and Results Using BeanSerializer"

on page 3-3

Note: The second argument to invoke() , the actionURI is

empty because the Oracle SOAP Server currently does not use the

argument.
Using Oracle SOAP with Java Services 2-11

Writing a SOAP Java Client
Waiting for a Response and Handling SOAP Faults
During invocation, if the Call timeout is not reached, and the invoke() method

returns, the Response object holds the SOAP return value or any fault generated.

The return value is stored in a Parameter component of the Response object. Use

the getValue() method to convert the response to a Java object. Example 2–7

shows how GetDate handles the response to either process a fault or show the date

returned from the simple clock service’s getDate method.

Example 2–7 SOAP Request Response and Fault Handling

 try
 {
 System.out.println("Calling urn:jurassic-clock");
 Response resp = call.invoke(url, "");
 if (!resp.generatedFault())
 {
 Parameter result = resp.getReturnValue();
 System.out.println(result.getValue());
 }
 else
 {
 System.out.println("FAULT Returned");
 System.out.println(resp.getFault().getFaultString());
 }
}
catch (SOAPException soapE)
{
 soapE.printStackTrace();
}
catch (Exception e)
{
 e.printStackTrace();
}

Running a Client
After writing a SOAP client and setting the SOAP environment, run the client as

you would any Java program. On UNIX, use the following commands:

cd $SOAP_HOME/bin
source clientenv.csh
java ${JAXP} samples.simpleclock.MySimpleClockClient ${SOAP_URL}
2-12 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Java Client
On Windows NT, use the following commands:

cd %SOAP_HOME%\bin
clientenv.bat
java %JAXP% samples.simpleclock.MySimpleClockClient %SOAP_URL%

Using Security Features with a Client
Oracle SOAP uses the security capabilities of the underlying transport that sends

SOAP messages. Oracle SOAP supports the HTTP and HTTPS protocols for sending

SOAP messages. HTTP and HTTPS support the following security features:

■ HTTP proxies

■ HTTP authentication (basic RFC 2617)

■ Proxy authentication (basic RFC 2617)

Table 2–2 lists the client-side security properties that Oracle SOAP supports.

In a SOAP client-side application, you can set the security properties shown in

Table 2–2 as system properties by using the -D flag at the Java command line. You

can also set security properties in the Java program by adding these properties to

the system properties (use System.setProperties() to add properties).

Example 2–8 shows how Oracle SOAP allows you to override the values specified

for system properties using Oracle SOAP transport specific APIs. The

setProperties() method in the class OracleSOAPHTTPConnection contains

set properties specifically for the HTTP connection (this class is in the package

oracle.soap.transport.http).

Example 2–8 Setting Security Properties for OracleSOAPHHTTPConnection

org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call();
oracle.soap.transport.http.OracleSOAPHTTPConnection conn =
(oracle.soap.transport.http.OracleSOAPHTTPConnection) call.getSOAPTransport();
java.util.Properties prop = new java.util.Properties();
// Use client code to set name-value pairs of properties in prop
.
.
.
conn.setProperties(prop);
Using Oracle SOAP with Java Services 2-13

Writing a SOAP Java Client
Note: The property java.protocol.handler.pkgs must be

set as a system property.

Table 2–2 SOAP HTTP Transport Security Properties

Property Description

http.authType Specifies the HTTP authentication type. The case of the value specified is ignored.

Valid values: basic

Specifying any value other than basic is the same as not setting the property.

http.password Specifies the HTTP authentication password.

http.proxyAuthType Specifies the proxy authentication type. The case of the value specified is ignored.

Valid values: basic

Specifying any value other than basic is the same as not setting the property.

http.proxyHost Specifies the hostname or IP address of the proxy host.

http.proxyPassword Specifies the HTTP proxy authentication password.

http.proxyPort Specifies the proxy port. The specified value must be an integer. This property is
only used when http.proxyHos t is defined; otherwise this value is ignored.

Default value: 80

http.proxyUsername Specifies the HTTP proxy authentication username.

http.username Specifies the HTTP authentication username.

java.protocol.
handler.pkgs

Specifies a list of package prefixes used by
java.net.URLStreamHandlerFactory . The prefixes should be separated by
"|" vertical bar characters.

This value should contain: oracle.net.www.protocol
This is required by the Java protocol handler framework; it is not defined by
Oracle SOAP.

This property must be set when using HTTPS. If this property is not set using
HTTPS, a java.net.MalformedURLException is thrown.

Note: This property must be set as a system property.

For example, set this property as shown in either of the following:

■ java.protocol.handler.pkgs=oracle.net.www.protocol

■ java.protocol.handler.pkgs=sun.net.www.protocol|
oracle.net.www.protocol
2-14 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

SOAP Troubleshooting
SOAP Troubleshooting
This section lists several techniques for troubleshooting Oracle SOAP, including:

■ Tunneling Using the TcpTunnelGui Command

■ Setting Configuration Options for Debugging

■ Using DMS to Display Runtime Information

oracle.soap.
transport.
allowUserInteraction

Specifies the allows user interaction parameter. The case of the value specified is
ignored. When this property is set to true and either of the following are true, the
user is prompted for a username and password:

1. If any of properties http.authType, http.username , or http.password
is not set, and a 401 HTTP status is returned by the HTTP server.

2. If either of properties http.proxyAuthType , http.proxyUsername , or
http.proxyPassword is not set and a 407 HTTP response is returned by
the HTTP proxy.

Valid values: true , false

Specifying any value other than true is considered as false .

oracle.
wallet.location

Specifies the location of an exported Oracle wallet or exported trustpoints.

Note: The value used is not a URL but a file location, for example:

/etc/ORACLE/Wallets/system1/exported_wallet (on UNIX)

d:\oracle\system1\exported_wallet (on Windows NT)

This property must be set when HTTPS is used with SSL authentication, server or
mutual, as the transport.

oracle.wallet.
password

Specifies the password of an exported wallet. Setting this property is required
when HTTPS is used with client, mutual authentication as the transport.

Table 2–2 (Cont.) SOAP HTTP Transport Security Properties

Property Description
Using Oracle SOAP with Java Services 2-15

SOAP Troubleshooting
Tunneling Using the TcpTunnelGui Command
SOAP provides the TcpTunnelGui command to display messages sent between a

SOAP client and a SOAP server. TcpTunnelGui listens on a TCP port, which is

different than the SOAP server, and then forwards requests to the SOAP server.

Invoke TcpTunnelGui as follows:

java org.apache.soap.util.net.TcpTunnelGui TUNNEL-PORT SOAP-HOST SOAP-PORT

Table 2–3 lists the command line options for TcpTunnelGui .

For example, suppose the SOAP server is running as follows,

http://system1:8080/soap/servlet/soaprouter

You would then invoke TcpTunnelGui on port 8082 with this command:

java org.apache.soap.util.net.TcpTunnelGui 8082 system1 8080

To test a client and view the SOAP traffic, you would use the following SOAP URL

in the client program:

http://system1:8082/soap/servlet/soaprouter

Setting Configuration Options for Debugging
To add debugging information to the SOAP Request Handler Servlet log files,

change the value of the severity option for the value debug in the file

soapConfig.xml. This file is placed in the directory $SOAP_
HOME/webapps/soap/WEB-INF/config on UNIX or in %SOAP_
HOME%\webapps\soap\WEB-INF\config on Windows NT.

Table 2–3 TcpTunnelGui Command Arguments

Argument Description

TUNNEL-PORT The port that TcpTunnelGui listens to on the same host
as the client

SOAP-HOST The host of the SOAP server

SOAP-PORT The port of the SOAP server
2-16 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

SOAP Troubleshooting
For example, the following soapConfig.xml segment shows the value to set for

severity to enable debugging:

<!-- severity can be: error, status, or debug -->
<osc:logger class="oracle.soap.server.impl.ServletLogger">
 <osc:option name="severity" value="debug" />
</osc:logger>

After modifying the value attribute for the severity option element in

soapConfig.xml , perform the following steps to view debug information.

1. Stop SOAP by using the stopSoapJServ command.

2. Restart SOAP by using the startSoapJServ command. You do not need to

perform this step if the SOAP Request Handler Servlet is running in auto start

mode.

After stopping and restarting the SOAP Request Handler Servlet, you can view

debug information in the file jserv.log . The file is in the directory $ORACLE_
HOME/Apache/Jserv/logs on UNIX or in

%ORACLE_HOME%\Apache\Jserv\logs on Windows NT.

Using DMS to Display Runtime Information
Oracle SOAP is instrumented with DMS to gather information on the execution of

the SOAP Request Handler Servlet, the Java Provider, and on individual services.

DMS information includes execution intervals from start to stop for the following:

■ Total time spent in SOAP request and response (includes time in providers and

services)

■ Total time spent in the Java Provider (includes time in services)

■ Total time executing services (soap/java-provider/ service-URI)

To view the DMS information, go to the following site:

http:// hostname : port /soap/servlet/Spy

See Also: "Using Auto Start Mode" on page 8-4
Using Oracle SOAP with Java Services 2-17

SOAP Troubleshooting
2-18 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

SOAP Parameters and Enco
3

SOAP Parameters and Encodings

This chapter describes the procedures you use to write a SOAP Java service, to

deploy the service, and to write a SOAP Java client for a service that uses arrays and

other nonscalar types for parameters or return values (Table 2–1 lists the scalar

types). In addition, this chapter provides information on SOAP encodings. You

should be familiar with the information in Chapter 2, "Using Oracle SOAP with

Java Services" before reading this chapter.

This chapter covers the following topics:

■ Writing a SOAP Java Service Using User-Defined Types

■ Deploying a SOAP Java Service Using User-Defined Types

■ Developing a SOAP Java Client Using Parameters

■ Writing a SOAP Service Using Arrays as Parameters

■ Writing a SOAP Service Using Literal XML Encoding
dings 3-1

Writing a SOAP Java Service Using User-Defined Types
Writing a SOAP Java Service Using User-Defined Types
Developing a SOAP Java service involves building a Java class that includes one or

more methods that generate responses to incoming calls. This section describes the

procedures for developing an AddressBook service that provides methods to get an

address, save a new address, and list all addresses in an AddressBook (the

AddressBook data is stored in memory). These methods take arguments and

expand on the basic SOAP Java service functionality shown in Chapter 2, "Using

Oracle SOAP with Java Services".

The complete Address Book service is supplied in the directory $SOAP_
HOME/samples/addressbook on UNIX or %SOAP_
HOME%\samples\addressbook on Windows NT.

To develop a SOAP Java service that includes user-defined types as parameters or

return values, you must complete the following steps:

■ Specifying a Package Name for the Service

■ Defining Java Methods Using Parameters with User-Defined Types

■ Serializing Java Parameters and Results Using BeanSerializer

■ Returning Results to the Request Handler Servlet

Specifying a Package Name for the Service
Create a SOAP Java service by writing a class containing methods that are deployed

as a SOAP service. When looking at the AddressBook service supplied with Oracle

SOAP, note that the single jar file, samples.jar contains a samples package, that

includes several samples (the jar file is in the directory $SOAP_
HOME/webapps/soap/WEB-INF/lib). The first line of AddressBook.java
specifies the package name for the service, addressbook , which is added to

samples.jar .

package samples.addressbook;

Defining Java Methods Using Parameters with User-Defined Types
The Addressbook service is implemented with a public class AddressBook and
defines the following public methods:

 public void addEntry(String name, Address address)
 public Address getAddressFromName(String name)
 public Element getAllListings()
 public int putListings(Element el)
3-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Java Service Using User-Defined Types
When SOAP Java methods take scalar arguments or return scalar types, and use the

standard SOAP v1.1 encoding, the Oracle SOAP Request Handler Servlet performs

serialization and encoding internally. For services implemented as Java methods

that take user-defined types as parameters or return user-defined types as results,

the application programmer needs to provide support classes to handle

serialization. With the AddressBook service, a user supplied serialization routine is

required for the Address type that addEntry() takes as a parameter and

getAddressFromName() returns. The Address user-defined type contains a

PhoneNumber type that also requires a user-supplied serialization routine.

Serializing Java Parameters and Results Using BeanSerializer
For types not found in Table 2–1, you can provide a JavaBean that supports

serialization and deserialization, using the standard SOAP v1.1 encoding. The

BeanSerializer class within Oracle SOAP uses JavaBeans to serialize and

deserialize user-defined types with the SOAP-ENC encoding style. This technique

enables handling of Java user-defined types for a SOAP service on both the client

and server-side.

Perform the following steps to use a JavaBean and the BeanSerializer :

1. Write the JavaBean to support the user-defined types that the service uses. The

following section, "Writing JavaBean Support Routines for User-Defined Types"

on page 3-3 describes this step.

2. Add the compiled JavaBean class to the appropriate CLASSPATH (on the

server-side and the client-side). The section, "Adding Compiled JavaBean

Classes to the CLASSPATH" on page 3-4 describes this step.

3. Deploy the JavaBean on the SOAP server by specifying a map element in a

service deployment descriptor. The section, "Deploying a SOAP Java Service

Using User-Defined Types" on page 3-6 describes this step.

Writing JavaBean Support Routines for User-Defined Types
The AddressBook sample provides several JavaBeans that the SOAP

BeanSerializer uses to support serialization in the AddressBook service. The

files Address.java and PhoneNumber.java provide the JavaBean serialization

support that allows SOAP to process and pass an address and a phone number

between the SOAP client and the SOAP server. These routines are JavaBeans for the
SOAP Parameters and Encodings 3-3

Writing a SOAP Java Service Using User-Defined Types
Address and PhoneNumber types. JavaBeans conform to the JavaBeans

specification and have the following characteristics:

■ Public set and get methods for each member of the user-defined type. The set

and get methods must have names conforming to the JavaBeans specification.

■ A default constructor taking no arguments.

Example 3–1 shows the conforming setCity() set method and getCity() get

method from the Address JavaBean that supports the AddressBook SOAP service

(see Address.java for the complete JavaBean sample).

Example 3–1 Sample Set and Get Methods from the Address JavaBean

 public void setCity(String city)
 {
 this.city = city;
 }

 public String getCity()
 {
 return city;
 }

Adding Compiled JavaBean Classes to the CLASSPATH
After creating and compiling the JavaBean, add the generated support class to the

CLASSPATH. Note, this code has to be made available to both the SOAP service on

the server-side and to the SOAP client code on the client-side.

On the server-side add the class to the CLASSPATH for the SOAP Request Handler

Servlet routine (the routine that invokes the Java service). There are two ways to

add the service class to the CLASSPATH, depending on the mode the Oracle SOAP

Request Handler Servlet is running in, either auto mode or non-auto mode.

■ Auto Mode: In auto mode, modify the wrapper.classpath in the file

jservSoap.properties in the directory

$ORACLE_HOME/Apache/Jserv/etc.

See Also:

http://www.javasoft.com/products/javabeans/docs for

information on JavaBeans
3-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Java Service Using User-Defined Types
■ Non-Auto Mode: In non-auto mode, change the CLASSPATH in the routine

startSoapJServ.sh on UNIX or startSoapJServ.bat on Windows NT.

After modifying the CLASSPATH, restart the SOAP Request Handler Servlet.

■ Auto Mode: In auto mode, perform the following step to restart. On UNIX, the

startup command is:

% stopSoapJServ.sh

On Windows NT, the command is:

> stopSoapJServ.bat

■ Non-Auto Mode: In non-auto mode, perform the following steps to restart on

UNIX:

% stopSoapJServ.sh
% startSoapJServ.sh

On Windows NT, the command is:

> stopSoapJServ.bat
> startSoapJServ.bat

Returning Results to the Request Handler Servlet
The getAddressFromName() code segment shown in Example 3–2 gets the

address from memory and returns an Address . The getAddressFromName()
method returns its result to the Oracle SOAP Java Provider.

Example 3–2 Generate Data and Return Result for Date

public Address getAddressFromName(String name)
 throws IllegalArgumentException
{
 if (name == null)
 {
 throw new IllegalArgumentException("The name must not be " + "null.");
 }
 return (Address)name2AddressTable.get(name);
 }

See Also: "Using Auto Start Mode" on page 8-4
SOAP Parameters and Encodings 3-5

Deploying a SOAP Java Service Using User-Defined Types
Encoding Java Parameters and Results
Oracle SOAP supports two types of XML encoding for user-defined parameters and

results:

■ Standard SOAP v.1.1 encoding

■ Literal XML encoding

For Java service parameters and results, the map element of the service descriptor

deployment file sets the encoding style, and the XML to Java and Java to XML

serialization and deserialization routines for user-defined types.

Deploying a SOAP Java Service Using User-Defined Types
To deploy a SOAP service with user-defined types, you need to create a service

deployment descriptor file and include a mappings element with map elements for

each user-defined type. Example 3–3 shows the mappings element from the

AddressBook service descriptor ServiceDescriptor.xml . This descriptor is

included in the directory $SOAP_HOME/samples/addressbook on UNIX or

%SOAP_HOME%\samples\addressbook on Windows NT. The service descriptor

file should conform to the service descriptor schema defined in service.xsd in

the directory $SOAP_HOME/schemas on UNIX or in %SOAP_HOME%\schemas on

Windows NT. Table 3–1 describes the attributes of the map element.

After creating the deployment descriptor file, deploy the service using the SOAP

Service Manager utility.

See Also:

■ "Deploying a SOAP Java Service Using User-Defined Types" on

page 3-6

■ "Handling Encoding, Serialization, and Mapping with

Parameters" on page 3-9

Note: The SOAP Service Manager does not currently validate the

deployment descriptor file using the schema service.xsd .
3-6 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Deploying a SOAP Java Service Using User-Defined Types
Example 3–3 Java Service Descriptor File for AddressBook Service

<isd:mappings>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:xml-soap-address-demo"
 qname="x:address"
 javaType="samples.addressbook.Address"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:xml-soap-address-demo"
 qname="x:phone"
 javaType="samples.addressbook.PhoneNumber"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
</isd:mappings>

See Also: "Using the Service Manager to Deploy and Undeploy

Java Services" on page 2-7

Table 3–1 Service Deployment Descriptor Map Element Attributes

Attribute Description

qname Specifies the qualified name of the serialized object. This is the XML type of the
serialized object.

javaType Establishes the relationship between qname and the corresponding Java type (the
Java type that gets serialized or deserialized).

java2XMLClassName Specifies the names of the classes that marshal user-defined parameters or return
values, mentioned in the javaType attribute. The BeanSerializer class is
delivered with the SOAP server, and uses the JavaBean for mapping. If the javaType
specified is not a JavaBean, interfaces are supplied that allow you to write your own
java2XML classes.

xml2JavaClassName Specifies the name of the classes that unmarshal user-defined parameters or return
values, mentioned in the javaType attribute. The BeanSerializer class is
delivered with the SOAP server, and uses the JavaBean for mapping. If the javaType
specified is not a JavaBean, interfaces are supplied that allow you to write your own
xml2java classes.
SOAP Parameters and Encodings 3-7

Developing a SOAP Java Client Using Parameters
Developing a SOAP Java Client Using Parameters
After creating and deploying one or more SOAP services, client-side applications

request service invocations. For details on the basic components of a client-side

application that makes a SOAP service request, see Chapter 2, "Using Oracle SOAP

with Java Services". This section shows additional SOAP client-side techniques that

allow you to use parameters to make service requests. The topics covered include:

■ Creating Parameters to Pass to a Service

■ Handling Encoding, Serialization, and Mapping with Parameters

■ Setting Up a Call to Request a Service with Parameters

■ Invoking a Call to Request a Service with Parameters

■ Running a Client with Parameters

Creating Parameters to Pass to a Service
This section describes the procedure for using the PutAddress client to make an

addEntry() method request of the AddressBook service. The AddressBook service

is supplied with Oracle SOAP in samples.jar . For complete details on the code

for this section, refer to PutAddress.java in the directory $SOAP_
HOME/samples/addressbook .

The command line arguments specify the address and phone number for the

Address parameter to pass to the SOAP method, addEntry() . Example 3–4

shows the instantiation for the Address object. The new Address is used as a

parameter in the addEntry() service when the service runs on the SOAP server.

PutAddress obtains the args[] values from the command line.

Example 3–4 Building an Address Object to Send as a SOAP Parameter

String nameToRegister = args[1];
PhoneNumber phoneNumber =
 new PhoneNumber(Integer.parseInt(args[7]), args[8], args[9]);
Address address = new Address(Integer.parseInt(args[2]),
 args[3],
 args[4],
 args[5],
 Integer.parseInt(args[6]),
 phoneNumber);
3-8 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Developing a SOAP Java Client Using Parameters
Handling Encoding, Serialization, and Mapping with Parameters
Using the standard SOAP encoding, the SOAP Java client-side API handles

serialization and encoding for primitive types internally. The PutAddress class

makes a request for the SOAP addEntry() method from the AddressBook SOAP

service. The addEntry() method takes an Address parameter, which is not a

primitive type. To pass an address, the SOAP client needs to handle serialization

and mapping for the Address and the PhoneNumber objects. Example 3–5 shows

the SOAPMappingRegistry , the BeanSerializer , and the encoding style flags

that allow the SOAP client to serialize these user-defined objects. Note that the

mapTypes() method takes a QName argument. The QName is defined when a

service is deployed on the SOAP server.

Example 3–5 SOAP Client-Side Call Serialization and Mapping

 SOAPMappingRegistry smr = new SOAPMappingRegistry();
 BeanSerializer beanSer = new BeanSerializer();

 String encodingStyleURI = Constants.NS_URI_SOAP_ENC;

 // create the type mapping

 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("urn:xml-soap-address-demo", "address"),
 Address.class, beanSer, beanSer);
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("urn:xml-soap-address-demo", "phone"),
 PhoneNumber.class, beanSer, beanSer);

Setting Up a Call to Request a Service with Parameters
The package org.apache.soap.rpc contains the SOAP Call object. A SOAP

client-side request uses a Call object to build a request for a SOAP service. After

the request is created, it is invoked to request that the client API pass the request on

to the SOAP server. Example 3–6 shows the code that builds a request for a service

invocation, including name and address that are sent to addEntry() .

See Also:

■ "Deploying a SOAP Java Service Using User-Defined Types" on

page 3-6

■ "Writing a SOAP Service Using Literal XML Encoding" on

page 3-13
SOAP Parameters and Encodings 3-9

Developing a SOAP Java Client Using Parameters
Example 3–6 Building a SOAP RPC Call with Parameters

Call call = new Call();
call.setSOAPMappingRegistry(smr);
String serviceId = "urn:www-oracle-com:AddressBook";
call.setTargetObjectURI(serviceId);
call.setMethodName("addEntry");
call.setEncodingStyleURI(encodingStyleURI);
Vector params = new Vector();
params.addElement(new Parameter("name", String.class,
 nameToRegister, null));
params.addElement(new Parameter("address", Address.class,
 address, null));
call.setParams(params);

This code does the following:

■ Creates the Call object

■ Sets the Call object’s target URI

■ Sets the Call object’s method name

■ Sets the Call object’s encoding style

■ Defines the Call object’s parameters with a QName to establish the mapping

In addition, the setTimeout() method sets the timeout, an integer representing

seconds. The default Call timeout, implicitly set in this example, specifies no

timeout. Setting a timeout value of 0 also specifies no timeout.

Invoking a Call to Request a Service with Parameters
In Example 3–7 the Call object’s invoke() method makes a SOAP request and

invokes the service at the specified URL. The Response object handles the

response. The URL that you provide on the command line should be the URL for

the SOAP Request Handler Servlet. This value depends on where SOAP is

deployed. For example, the URL could be composed as follows:

http:// machineName: port /soap/servlet/soaprouter
3-10 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Service Using Arrays as Parameters
Example 3–7 Making the SOAP RPC Call Invocation

Response resp;
 try
 {
 resp = call.invoke(url, SOAPactionURI);
 }
 catch (SOAPException e)
 {
 System.err.println("Caught SOAPException (" +
 e.getFaultCode() + "): " +
 e.getMessage());
 return;
 }

Running a Client with Parameters
After writing a SOAP client using parameters, and setting the SOAP environment,

run the client as you would any Java program:

cd $SOAP_HOME/bin
source clientenv.csh
java ${JAXP} samples.addressbook.PutAddress ${SOAP_URL} "John Doe" 123 "Main
Street" AnyTown SS 12345 800 555 1212

Writing a SOAP Service Using Arrays as Parameters
Consider a SOAP Java service that returns the sum of the elements of an integer

array. Example 3–8 shows the SOAPArrayCalculator service that takes an array

parameter and returns the sum. The getSum() method returns the sum of the

input elements of the integer array, array1 .

This section covers the following:

■ Server-Side Adjustments for Using Arrays as Parameters

■ Client-Side Adjustments for Using Arrays as Parameters

Note: The second argument to invoke() , the actionURI is not

used. The Oracle SOAP server currently does not use this

argument.
SOAP Parameters and Encodings 3-11

Writing a SOAP Service Using Arrays as Parameters
Server-Side Adjustments for Using Arrays as Parameters
For a SOAP Java service, passing arrays on the server-side is no different than

passing other parameters, as shown in Example 3–8.

Example 3–8 SOAP Java Service Using an Array Parameter

package SOAPServices;
public class SOAPArrayCalculator extends Object
{
 public SOAPArrayCalculator()
 {
 }
 public static int getSum(int[] array1)
 {
 int result = 0;
 for (int i=0; i<array1.length; i++)
 result += array1[i];
 return result;
 }
}

Client-Side Adjustments for Using Arrays as Parameters
On the client-side, making a request for a SOAP Java service and passing arrays is

slightly different than passing other parameters. Example 3–9 shows that the Java

client-side application must send an array of Integer for the corresponding array

of int in the service on the server-side. SOAP handles the encoding and decoding

of the array using a reflection mechanism implemented at the SOAP server level.

This mechanism allows SOAP to know what to receive and how to stream it in the

requests and responses.

Example 3–9 SOAP Request Using an Array Parameter

Integer[] array = getIntegerArray();
Vector prms = new Vector();
prms.addElement(new Parameter("integerArray", Integer[].class, array, null));
call.setParams(prms);

Note: From the client-side, all parameters sent as components of

an array must use an Object type.
3-12 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Service Using Literal XML Encoding
Writing a SOAP Service Using Literal XML Encoding
This section uses the getAllListings() method in the AddressBook service to

describe the procedure for writing a SOAP service using literal XML encoding. The

getAllListings() method returns a list of all AddressBook listings as a literal

XML element. The SOAP client application GetAllListings.java is included in

the directory $SOAP_HOME/samples/addressbook . This section describes the

changes you need to make on both the client and server sides to support passing

parameters or results using a literal XML encoding.

This section covers the following topics:

■ Server-Side Adjustments for Using Literal XML Encoding

■ Server-Side Adjustments for Using Literal XML Encoding

Server-Side Adjustments for Using Literal XML Encoding
When writing a Java SOAP service that uses a literal XML encoding for a parameter

or for a return value, add the following imports to support working in XML:

import java.util.*;
import org.w3c.dom.*;
import org.apache.soap.util.xml.*;
import oracle.soap.util.xml.XmlUtils;

Creating a Return Value with Literal XML Encoding
The SOAP Request Handler Servlet uses literal XML encoding for all parameters

that specify this encoding in a client request, and for return values when the default

encoding style set for the call specifies XML encoding. Use the Call method,

setEncodingStyleURI() with a value of Constants.NS_URI_LITERAL_XML
to set the default encoding style for a call to literal XML.

The Java service implementation provides either the appropriate literal XML

parameters or a literal XML return value. For example, when literal XML encoding

is specified as the default encoding in the SOAP request, the return value sent back

to the client from the Java service should be a valid XML element, as defined by

org.w3c.dom.Element . Thus, the client call specifies the default encoding that is

used for a return value, and for all parameters that do not explicitly set an encoding

style. The service provides a valid object that conforms to the encoding. The

AddressBook method getAllListings() shows how a Java service could build

an Element that SOAP could encode literally in XML. Oracle SOAP supplies

XmlUtils methods that support working with XML documents.
SOAP Parameters and Encodings 3-13

Writing a SOAP Service Using Literal XML Encoding
Client-Side Adjustments for Using Literal XML Encoding
On the client-side, a SOAP service that passes a literal XML argument or returns a

literal XML value is very similar to the services using the basic SOAP Java

functionality shown in Chapter 2, "Using Oracle SOAP with Java Services".

Minor changes are required to support literal XML encoding, including:

■ Specifying a Call with Literal XML Encoding

■ Invoking a Call with Literal XML Encoding

Specifying a Call with Literal XML Encoding
To specify a call using literal XML encoding for all parameters and results, use the

setEncodingStyleURI() method, with the value Constants.NS_URI_
LITERAL_XML. Example 3–10 shows the Java that builds the call for

getAllListings() .

Example 3–10 Making a SOAP Call Using Literal XML Encoding

Call call = new Call();
String serviceId = "urn:www-oracle-com:AddressBook";
call.setTargetObjectURI(serviceId);
call.setMethodName("getAllListings");
call.setEncodingStyleURI(Constants.NS_URI_LITERAL_XML);

Invoking a Call with Literal XML Encoding
After setting up the client to receive a literal XML encoded result, invoke the

service on the SOAP server as you would any service. Using GetAllListings , the

result is sent in the response return value. Example 3–11 shows how the return

value is placed in a SOAP client API Parameter object, which is then cast to an

Element using the getValue() method.

Example 3–11 Invoking and Processing with Literal XML Results

Response resp;

try
{
 resp = call.invoke(url, "");
}
catch (SOAPException e)
{
 System.err.println("Caught SOAPException (" +
3-14 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing a SOAP Service Using Literal XML Encoding
 e.getFaultCode() + "): " +
 e.getMessage());
 return;
}
Check value // check the response

if (!resp.generatedFault())
{
 Parameter ret = resp.getReturnValue();
 Element bookEl = (Element)ret.getValue();

 System.out.println(DOM2Writer.nodeToString(bookEl));
}
else
{
 Fault fault = resp.getFault();

 System.err.println("Generated fault: ");
 System.out.println (" Fault Code = " + fault.getFaultCode());
 System.out.println (" Fault String = " + fault.getFaultString());
 }
}

SOAP Parameters and Encodings 3-15

Writing a SOAP Service Using Literal XML Encoding
3-16 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

SOAP Audit Lo
4

SOAP Audit Logging

The Oracle SOAP audit logging feature monitors and records SOAP usage. Audit

logging maintains records for postmortem analysis and accountability. The SOAP

audit logging feature complements the audit logging capabilities available with the

transport-specific server, the Apache HTTP listener, which hosts the SOAP Request

Handler Servlet (SOAP server).

Oracle SOAP stores audit trails as XML documents. Using XML documents, Oracle

SOAP creates portable audit trails and enables the transformation of complete audit

trails or individual audit records to different formats.

By default, Oracle SOAP audit logging uses an audit logger class that implements

the Handler interface (part of the oracle.soap.server package). The audit

logger class is invoked conditionally to monitor events including service requests,

service responses, and errors.

This chapter covers the following topics:

■ Audit Logging Information

■ Auditable Events

■ Configuring the Audit Logger
gging 4-1

Audit Logging Information
Audit Logging Information
Table 4–1 lists the audit logging elements available for each audit log record.

Individual audit log records may not contain all these elements. In the log file, each

audit log record is stored as a SoapAuditRecord element.

Audit Logging Output
The XML schema for the generated audit log is provided in the file

SoapAuditTrail.xsd in the directory $SOAP_HOME/schema on UNIX or

%SOAP_HOME%\schema on Windows NT. Refer to the schema file for complete

details on the format of a generated audit log record.

Auditable Events
The audit logger class is invoked when an auditable event occurs and the SOAP

Request Handler Servlet is configured to enable auditing for the event. Auditable

events include a service request or a service response.

Table 4–1 Available Audit Record Elements

Audit Record Element Description

HostName Specifies the hostname of the client that sent the request.

IpAddress Specifies the IP address of the client that sent the request.

Method Specifies the method name for the SOAP request.

Request Provides the complete SOAP request message.

Response Provides the complete SOAP response message.

ServiceURI Specifies the service URI for the SOAP request.

SoapAuditRecord Contains an individual record. The chainType attribute
indicates if the record is generated as part of a request or a
response.

TimeStamp Specifies the system time when the SOAP audit record was
generated.

User Specifies the username associated with the request. Note, this
element is only provided when a user context is associated with
the service request or service response.
4-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Auditable Events
Audit Logging Filters
An audit logging filter can be specified in the SOAP configuration file to limit the

set of auditable events that are recorded to the audit log. The SOAP server applies

event filters to request and response events. Table 4–2 shows the filter attributes

available to select with an event filter specification. When applied, filters limit the

number of records generated in the audit log. For example, when a filter is specified

for a particular host, only the auditable events generated for the specified host are

saved to the audit log.

The syntax for defining auditable events with a filter is derived from RFC 2254.

Table 4–3 shows the filter syntax, and Example 4–1 provides several examples.

See Also: "Configuring the Audit Logger" on page 4-5

Table 4–2 Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description

Host Specifies the hostname of the host for the service request or response. If this attribute is not
specified in a filter, the hostname of the client is not used in filtering audit log records.

Fully specify the hostname of the client or use wildcards ("*"). Wildcards embedded within
the specified hostname are not supported (see the examples below showing valid and
invalid uses of wildcards). If a wildcard is used then the wildcard must be the first character
in the filter.

Case is ignored for hostnames. Care should be used in setting this attribute. Depending on
the DNS setup, the hostname returned could be fully qualified or nonqualified; for example,
explosives.acme.com or explosives . For some IP addresses, the DNS may not be
able to resolve the hostname.

Legal values for a Host filter attribute include the following examples:

explosives.acme.com, *.acme.com, *.com

Illegal values for a Host filter attribute include the following examples:

, explosives.acme., explosives.*, ex*s.acme.com, *ives.acme.com
SOAP Audit Logging 4-3

Auditable Events
ip Specifies the IP address of the client for the service request or response.

The IP address of the client has to be either fully specified, using all four bytes, in the dot
separate decimal form, or specified using wildcards ("*"). Embedded wildcards are not
supported. If a wildcard is used then the wildcard must be the last character in the filter.

If this attribute is not used in a filter then the IP address of the client is not used in filtering.

Legal values for an ip filter attribute include the following examples:

 138.2.142.154, 138.2.142.*, 138.2.*, 138.*

Illegal values for an ip filter attribute include the following examples:

, 138.2..154, *.2, 138.*.152, 138.2.142, 138.2, 138

urn Specifies the service URN. Wildcards are not supported for this attribute.

username Specifies the transport level username associated with the client.

Wildcards are not supported in a username filter attribute.

Table 4–3 Audit Log Filter Syntax

Filter Value Description

filter "("filtercomp")"

Whitespaces between "("filtercomp and ")" are not allowed.

filtercomp and | or | not | item

and = "&" filterlist

or = "|" filterlist

not = "!" filter

filterlist 2*2 filter

item attr filtertype value

Whitespaces between attr, filtertype and value are not allowed.

filtertype equal

equal "="

attr 1*(any US-ASCII char except "*", "(", ")", "&", "|", "!", "*", "=")

Table 4–2 (Cont.) Audit Trail Events Filter Attributes

Audit Event
Filter Attributes Description
4-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Configuring the Audit Logger
Example 4–1 Audit Log Filters

(ip=138.2.142.154)
(!(host=localhost))
(!(host=*.acme.com))
(&(host=*.acme.com)(username=daffy))
(&(ip=138.2.142.*)(|(urn=urn:www-oracle-com:AddressBook)(username=daffy)))

Configuring the Audit Logger
Configure the default SOAP audit logger supplied with Oracle SOAP by setting

parameters in the SOAP configuration file, soapConfig.xml . To enable the default

audit logger and turn on audit logging, do the following in the configuration file.

■ Define the name and options for the audit log handler. The default SOAP audit

logger is defined in the class

oracle.soap.handlers.audit.AuditLogger . The default audit logger

supports several options that you specify in the configuration file. Table 4–4

shows the available audit logger options.

■ Add the name for the audit logger handler to the requestHandler ,

responseHandler , or errorHandler chain (or to all of the handler chains).

Example 4–2 shows a sample segment from a SOAP configuration file including the

audit logging configuration options. Example 4–2 shows configuration options set

to use all options. However, this configuration would produce an extremely large

audit log, and is not recommended.

value 1*(any octet except ASCII representation of ")" - 0x29).

The character "*" has a special meaning.

The "*" character is referred to as a wildcard and matches anything.

Note: When you audit errors using the audit logger, it is possible

that the request or response message may not be included in the

audit log record, even with includeRequest or

includeResponse enabled.

Table 4–3 (Cont.) Audit Log Filter Syntax

Filter Value Description
SOAP Audit Logging 4-5

Configuring the Audit Logger
Example 4–2 Audit Logging Configuration

<osc:handlers>
 <osc:handler name="auditor"
 class="oracle.soap.handlers.audit.AuditLogger">
 <osc:option name="auditLogDirectory"
 value="/private1/oracle/app/product/tv02/soap/webapps/soap/WEB-INF"/>
 <osc:option name="filter" value="(!(host=localhost))"/>
 <osc:option name="includeRequest" value="true"/>
 <osc:option name="includeResponse" value="true"/>
 </osc:handler>
</osc:handlers>
<osc:requestHandlers names="auditor"/>
<osc:responseHandlers names="auditor"/>
<osc:errorHandlers names="auditor"/>

Table 4–4 Audit Logger Configuration Options

Option Description

auditLogDirectory Specifies the directory where the audit log file is saved. The
auditLogDirectory option is required. The name of the
generated audit log file is OracleSoapAuditLog .timestamp ,
where timestamp is the date and time the file is first generated.

Valid values: any string that is a valid directory

filter Specifies the audit event filter. This option is optional. If a filter
is not specified SOAP server logs every event.

Valid values: any valid filter.

includeRequest Specifies that the audit record include the request message for the
event that generated the audit log record.

Valid values: true , false

Any value other than true or false is treated as an error.

Default Value: false

includeResponse Specifies that the audit record include the response message for
the event that generated the audit log record.

Valid values: true , false

Any value other than true or false is treated as an error.

Default Value: false

See Also: "Configuring the Request Handler Servlet" on page 8-2
4-6 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

SOAP Han
5

SOAP Handlers

Oracle SOAP supports handlers for the SOAP Request Handler Servlet (SOAP

server) that are configured in handler chains. Handlers are invoked at specific times

for each SOAP request.

This chapter covers the following topics:

■ Handler Overview

■ Request Handlers

■ Response Handlers

■ Error Handlers

■ Configuring Handlers
dlers 5-1

Handler Overview
Handler Overview
A handler is a class that implements the oracle.soap.server.Handler
interface. A handler can be configured as part of a chain in one of three contexts:

request, response, or error. Note that handlers in a chain are invoked in the order

they are specified in the configuration file.

Request Handlers
Handlers in the request chain are invoked on every request that arrives,

immediately after the SOAP Request Handler Servlet reads the SOAP Envelope and

before performing the service lookup. If any handler in the request chain throws an

exception, the processing of the chain is immediately terminated and the service is

not invoked.

The error chain is invoked if any exception occurs during request chain invocation.

Response Handlers
Handlers in the response chain are invoked on every request immediately after the

service completes. If any handler in the response chain throws an exception,

processing of the chain is immediately terminated. The error chain is invoked if any

exception occurs during response chain invocation.

Error Handlers
When an exception occurs during either request-chain invocation, service

invocation, or response-chain invocation, the SOAP Request Handler Servlet

invokes the handlers in the error chain. In contrast to the request and response

chains, an exception from an error handler is logged and processing of the error

chain continues. All handlers in the error chain are invoked, regardless of whether

one of the error handlers throws an exception.

See Also: "Configuring Handlers" on page 5-3
5-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Configuring Handlers
Configuring Handlers
Configure handlers and handler chains in the SOAP configuration file. Handlers

can be invoked for each service request or response, or when an error occurs.

Handlers are global in the sense that they apply to every SOAP request and cannot

be configured on a subset of requests, such as all requests for a particular service.

Configure a handler by setting parameters in the SOAP configuration file,

soapConfig.xml . Example 5–1 shows a sample segment from a SOAP

configuration file showing the configuration for a handler.

Example 5–1 Handler Configuration

<osc:handlers>
 <osc:handler name="auditor"
 class="oracle.soap.handlers.audit.AuditLogger">
 <osc:option name="auditLogDirectory"
 value="/private1/oracle/app/product/tv02/soap/webapps/soap/WEB-INF"/>
 <osc:option name="filter" value="(!(host=localhost))"/>
 </osc:handler>
</osc:handlers>

<osc:requestHandlers names="auditor"/>
<osc:responseHandlers names="auditor"/>
<osc:errorHandlers names="auditor"/>
SOAP Handlers 5-3

Configuring Handlers
5-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing SOAP Prov
6

Writing SOAP Providers

This chapter describes the Oracle SOAP Provider Interface and includes

information on the following topics:

■ Provider Interface Overview

■ Implementing a Provider Interface

■ Handling Provider Deployment
iders 6-1

Provider Interface Overview
Provider Interface Overview
Oracle SOAP includes a prepackaged provider implementation. In addition, Oracle

SOAP includes a Provider Interface that allows you to write a custom provider to

support services of types other than the prepackaged types. You can add a provider

to support a service by implementing the Provider Interface.

Oracle SOAP includes provider implementations to support services for the

following:

■ Java classes

Implementing a Provider Interface
The Oracle SOAP Provider Interface is a Java interface that enables the SOAP

Request Handler Servlet to work uniformly with different types of service

providers. A SOAP Provider, also called a service provider, is an implementation of

the Provider Interface that encapsulates the logic necessary to invoke methods on a

specific type of service. Using a provider that is an implementation of the Provider

Interface simplifies the SOAP Request Handler Servlet and allows you to add new

types of service providers.

This section shows the basic steps for building a custom provider. For specific

details, and a sample of the code required to build a custom provider, see the

provider sample supplied with Oracle SOAP in the directory $SOAP_
HOME/samples/provider .

Developing a custom SOAP Provider consists of the following steps:

■ Implementing Provider Interface Methods

■ Handling Provider Deployment

See Also:

■ Chapter 1, "Simple Object Access Protocol Overview"

■ Chapter 2, "Using Oracle SOAP with Java Services"

Note: When adding a new provider type, you only need to

implement the Provider Interface once for each type of service.

Thus, a SOAP server supports a small number of types of service

providers and a potentially large number of services.
6-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Implementing a Provider Interface
Implementing Provider Interface Methods
The provider writer implements the following methods that are included in the

Provider Interface:

public void destroy();
public String getId();
public void init(ProviderDeploymentDescriptor pd, SOAPServerContext ssc);
public void invoke(RequestContext requestContext);

Working with the Provider init() Method
The init() method receives the provider configuration deployment descriptor

options and initializes the provider using the supplied configuration information.

Provider-specific options are passed to the init() method as attributes from the

SOAP Request Handler Servlet. Use these attributes to initialize an instance of the

provider. An example of provider-specific options are the Hostname and Port for a

Database Server Connection.

The provider init() method handles any required initialization that is required as

a one-time-only initialization for service providers. The init() method is invoked

by the SOAP Request Handler Servlet exactly once before the handler makes any

requests to services that the provider supports. This process allows the provider to

set up any required provider-specific global context.

Working with the Provider invoke() Method
After provider initialization occurs, most of the work for the provider

implementation occurs in the invoke() method. This method invokes the

requested method in the specified SOAP service.

The invoke() method performs the following important actions:

■ Supports RPC-based invocation

■ Unmarshals request parameters destined for a service

■ Marshals response parameters generated from a service invocation

■ Runs in a thread-safe manner

The SOAP Request Handler Servlet passes service-specific options to the provider.

These options are read from the service deployment descriptor when the service is

deployed. Service-specific options describe a service deployed in a provider. An

example of a service-specific option is the name of the Java class for a method that

implements a Java service.
Writing SOAP Providers 6-3

Implementing a Provider Interface
The invoke() parameter of type RequestContext completely describes a service

request. Given the RequestContext , the invoke() method takes care of certain

steps, as shown in the following procedure. For complete details on the code for

these steps, see the provider sample supplied with Oracle SOAP in the directory

$SOAP_HOME/samples/provider .

1. Get the service-specific options, and build the SOAPMappingRegistry . Use

the RequestContext method getServiceDeploymentDescriptor() to

get the service options.

UserContext ucontext = rc.getUserContext();
String serviceId = rc.getServiceId();
ServiceDeploymentDescriptor sd = rc.getServiceDeploymentDescriptor();
SOAPMappingRegistry smr =
 ServiceDeploymentDescriptor.buildSOAPMappingRegistry(sd);

2. Unmarshall the parameters for the service method using a Call object,

Call.extractFromEnvelope() , and the RequestContext method

getRequestEnvelope() .

Call call = Call.extractFromEnvelope(rc.getRequestEnvelope(), smr);
rc.setRequestEncodingStyle(call.getEncodingStyleURI());

3. Build the arguments and determine response encoding style using

call.getEncodingStyleURI() and param.getEncodingStyleURI() .

String respEncStyle = call.getEncodingStyleURI();
Vector params = call.getParams ();
Object[] args = null;
Class[] argTypes = null;
if (params != null)
{
 int paramsCount = params.size ();
 args = new Object[paramsCount];
 argTypes = new Class[paramsCount];
 for (int i = 0; i < paramsCount; i++)
 {
 Parameter param = (Parameter) params.elementAt (i);
 args[i] = param.getValue ();
 argTypes[i] = param.getType ();
 if (respEncStyle == null)
 {
 respEncStyle = param.getEncodingStyleURI ();
 }
 }
 }
6-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Implementing a Provider Interface
4. Set a default encoding for the response.

if (respEncStyle == null)
{
 respEncStyle = Constants.NS_URI_SOAP_ENC;
}
rc.setRequestEncodingStyle(respEncStyle);

5. Invoke the service method, and obtain a result and a vector of parameters for

any parameters that are returned (outParams).

Bean result = null;
Vector outParams = new Vector();
try
{
 m_log.log("Invoking method ’" + methodName + "’", Logger.SEVERITY_DEBUG);
 result = new Bean(String.class, "this is the result");
 outParams.addElement(
 new Parameter("paramName", String.class, "this is a param",
 null));
}
catch (Throwable t)
{
 throw new SOAPException(Constants.FAULT_CODE_SERVER,
}

6. Create a response, and save the result as a Response object. The SOAP Request

Handler Servlet marshals the envelope before returning.

try
{
 if (sd.getServiceType() ==
 ServiceDeploymentDescriptor.SERVICE_TYPE_RPC)
 {
 Parameter ret = null;
 if (result != null && result.type != void.class)
 {
 ret = new Parameter (RPCConstants.ELEM_RETURN,
 result.type, result.value, null);
 }
 Response resp = new Response(rc.getServiceId(),
 call.getMethodName(), ret, outParams, null, respEncStyle);

 try
 {
 Envelope respEnvelope = resp.buildEnvelope();
Writing SOAP Providers 6-5

Implementing a Provider Interface
 rc.setResponseEnvelope(respEnvelope);
 rc.setResponseMap(smr);
 }
 catch (Exception e)
 {
 throw new SOAPException (Constants.FAULT_CODE_SERVER,
 "error building response envelope", e);
 }

 }
 else
 {
 throw new SOAPException (Constants.FAULT_CODE_SERVER,
 "invalid service type");
 }

}
catch (Exception e)
{
 m_log.log("Error creating response: " + e, Logger.SEVERITY_DEBUG);
 throw new SOAPException (Constants.FAULT_CODE_SERVER,
 "error creating response", e);
}

Working with the Provider destroy() Method
The destroy() method performs one-time service provider cleanup. This method

is invoked by the SOAP Request Handler Servlet exactly once before the handler

shuts down. This method gives the provider the opportunity to do global cleanup,

such as closing connections.

Working with the Provider getId() Method
The getId() method supplies the provider ID. The provider ID, for a particular

provider is unique within the SOAP Request Handler Servlet.
6-6 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Handling Provider Deployment
Handling Provider Deployment
After implementing a custom provider, if you are using the default Provider

Manager and the default Service Manager, you should update the XML provider

deployment descriptor schema and the XML service deployment descriptor schema

to conform to the new requirements for the new provider. This sections covers the

following:

■ Updating the Provider Deployment Descriptor Schema

■ Updating the Service Deployment Descriptor Schema

Updating the Provider Deployment Descriptor Schema
A service provider must be deployed to make its services available. To deploy a

service provider, you can either implement a custom Provider Manager or use the

default Provider Manager and deploy providers using the Provider Manager Client.

The default Provider Manager reads an XML provider deployment descriptor that

conforms to the XML provider deployment schema.

Example 6–1 shows a sample provider deployment descriptor file for a SOAP

service using a custom Provider.

Note: Using the default Provider Manager and the default Service

Manager, it is not required that you update the schemas. The

Provider Manager and Service Manager process the deployment

descriptor files and do not check the accuracy of the values found

in the deployment descriptor files against the valid values specified

in the schemas. Thus, the default Provider Manager and Service

Manager support deployment descriptor values that are not in the

corresponding schemas.

See Also: "Creating a Provider Manager" on page 7-1 and

"Creating a Service Manager" on page 7-2
Writing SOAP Providers 6-7

Handling Provider Deployment
Example 6–1 Custom Provider Deployment Descriptor

<isd:provider xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/provider"
 id="company-provider"
 class="oracle.soap.providers.sp.SpProvider" >
 <isd:storedProcedure jdbc="jdbc:oracle:oci8"
 username="scott"
 password="tiger"
 service="YOUR-SERVICE-NAME" />
</isd:provider>

Updating the Service Deployment Descriptor Schema
A service provider encapsulates all of the logic necessary to invoke SOAP methods

in services that are implemented as a specific type, such as a stored procedure or a

Java class. A service provider must be deployed to make its services available. To

deploy a service provider, implement a custom Service Manager, or use the default

Service Manager and deploy providers with the Service Manager Client.

The default Server Manager reads an XML service deployment descriptor that

conforms to the XML schema.

Example 6–2 shows a custom Service Deployment Descriptor file for a SOAP

service using a custom Provider.

Example 6–2 Custom Service Deployment Descriptor

 <isd:service xmlns:isd="http://xmlns.oracle.com/soap/2001/04/deploy/service"
 id="urn:www-oracle-com:company"
 type="rpc" >
 <isd:provider
 id="company-provider"
 methods="ADDEMP GETEMP GETADDRESS GETEMPINFO CHANGESALARY REMOVEEMP"
 scope="Application" >

 <isd:storedProcedure schema="SCOTT" package="COMPANY" />

 </isd:provider>

 <isd:mappings>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:company-sample" qname="x:EMPLOYEE"

See Also: $SOAP_HOME/schema/provider.xsd for the

complete provider deployment descriptor schema
6-8 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Handling Provider Deployment
 javaType="samples.sp.company.Employee"
 sqlType="SCOTT.EMPLOYEE"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"

xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 <isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:company-sample" qname="x:ADDRESS"
 javaType="samples.sp.company.Address"
 sqlType="SCOTT.ADDRESS"
 java2XMLClassName="org.apache.soap.encoding.soapenc.BeanSerializer"

xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
 </isd:mappings>

 <isd:faultListener class="org.apache.soap.server.DOMFaultListener"/>

</isd:service>

See Also: $SOAP_HOME/schema/service.xsd for the

complete service deployment descriptor schema.
Writing SOAP Providers 6-9

Handling Provider Deployment
6-10 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Writing Deployment Man
7

Writing Deployment Managers

This chapter describes several deployment manager interfaces supporting SOAP

administration. The topics covered include:

■ Creating a Provider Manager

■ Creating a Service Manager

Creating a Provider Manager
The ProviderManager interface defines the interface to manage providers. The

SOAP Request Handler Servlet (SOAP server) uses a Provider Manager is to deploy

providers, undeploy providers, and access provider deployment information. The

ProviderManager interface is part of the oracle.soap.server package.

A ProviderManager implementation may cache deployment information. The

ProviderManager must maintain the cache.

The HTTP server provides security for the Provider Manager. The Provider

Manager can be configured with a specific URL. In order to be accepted, all requests

must the be made to the specified URL. If a SOAP request for the Provider

Manager is made to any other URL, the request is rejected. This URL should be an

alias to the SOAP Request Handler Servlet, and HTTP Listener security may be set

to control which users can post to the specified URL.

See Also:

■ $SOAP_HOME/docs/apiDocs/index.htm l on UNIX or

%SOAP_HOME%\docs\apiDocs\index.html on Windows

NT

■ "Setting Provider Manager and Service Manager Configuration

Options" on page 8-3
agers 7-1

Creating a Service Manager
Creating a Service Manager
The ServiceManager interface defines the interface to manage services. The

SOAP Request Handler Servlet (SOAP server) uses a Service Manager is to deploy

services, undeploy services, and access service deployment information. The

ServiceManager interface is part of the oracle.soap.server package.

The Service Manager may cache deployment information and is responsible to

maintain the cache.

The HTTP server provides security for the Service Manager. The Service Manager

can be configured with a specific URL. In order to be accepted, all requests must be

made to the specified URL. If a SOAP request for the Service Manager is made to

any other URL, the request is rejected. This URL should be an alias to the SOAP

Request Handler Servlet, and HTTP Listener security may be set to control which

users can post to the specified URL.

See Also:

■ $SOAP_HOME/docs/apiDocs/index.htm l on UNIX or

%SOAP_HOME%\docs\apiDocs\index.html on Windows

NT

■ "Setting Provider Manager and Service Manager Configuration

Options" on page 8-3
7-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

SOAP Administ
8

SOAP Administration

This chapter describes configuration and administration details for Oracle SOAP.

This chapter covers the following topics:

■ Configuring the Request Handler Servlet

■ Using Auto Start Mode

■ Setting Jserv Configuration and Security

■ Changing the HTTP Listener Port Number

■ Configuring Memory Options
ration 8-1

Configuring the Request Handler Servlet
Configuring the Request Handler Servlet
The Oracle SOAP Request Handler uses an XML configuration file to set required

servlet parameters. By default, this file is named soapConfig.xml and is placed in

the directory $SOAP_HOME/webapps/soap/WEB-INF/config on UNIX or

%SOAP_HOME\webapps\soap\WEB-INF\config on Windows NT. The XML

namespace for this file is:

http://xmlns.oracle.com/soap/2001/04/config

To use a different configuration file for SOAP installation, modify the path name

specified for the SoapConfig parameter in the soap.properties file. For

example, to change the configuration file from the default, soapConfig.xml , to

newConfig.xml , modify the value set for soapConfig in soap.properties .

servlet.soaprouter.initArgs=soapConfig= soap_home/soap/webapps/soap/WEB-INF/config/newConfig.xml

Where soap_home is the full path to the SOAP installation on your system.

Table 8–1 lists the SOAP deployment parameters available for configuring the

SOAP Request Handler Servlet.

Table 8–1 SOAP Request Handler Servlet Configuration File Parameters

Parameter Description

errorHandlers Specifies a list of handlers for the error handler chain.

faultListeners Specifies a list of fault listeners.

handlers Specifies the available handler names and the options for each handler.

logger Error and informational messages are logged using the class defined in the logger
element. The logger class must extend oracle.soap.server.Logger .

Oracle SOAP includes the class oracle.soap.server.impl.ServletLogger
that collects the servlet log methods so that SOAP messages are logged to the
servlet log file. ServletLogger is the default logger. For the default logger, the
severity option can be to any of the following values: status , error , debug .
8-2 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Configuring the Request Handler Servlet
Setting Provider Manager and Service Manager Configuration Options
The SOAP providerManager and serviceManager can be configured as SOAP

services. To configure these deployment administration routines as SOAP services,

set the serviceManager autoDeploy option to the value true in the

soapConfig configuration file. Set the value to false to disable this option.

When the administration routines are deployed as SOAP services, you can

optionally specify a specific URL for these services (an administration URL).

Specifying an administration URL helps to maintain security for SOAP service

deployment, and is recommended. To set and control the administration URL,

perform the following three steps.

providerManager Defines how the server accesses provider deployment information.

The providerManager class attribute specifies a Java class that implements
oracle.soap.server.ProviderManager .

Oracle SOAP includes the class
oracle.soap.server.impl.FileProviderManager which stores provider
deployment information in a file. Using FileProviderManager, the file name is
specified with the filename option.

See "Setting Provider Manager and Service Manager Configuration Options" on
page 8-3 for more information.

requestHandlers Specifies a list of handlers for the request handler chain

responseHandlers Specifies a list of handlers for the response handler chain

serviceManager Defines how the server accesses service deployment information.

The serviceManager class attribute specifies a Java class that implements
oracle.soap.server.ServiceManager .

Oracle SOAP includes the class
oracle.soap.server.impl.FileServiceManager which stores the service
deployment information in a file. Using FileServiceManager , the file name is
specified with the filename option.

See "Setting Provider Manager and Service Manager Configuration Options" on
page 8-3 for more information.

Table 8–1 (Cont.) SOAP Request Handler Servlet Configuration File Parameters

Parameter Description
SOAP Administration 8-3

Using Auto Start Mode
1. Configure ProviderManager and ServiceManager by setting the

requiredRequestURI option in soapConfi.xml . Set the serviceManager
or providerManager option requiredRequestURI to specify a URL for

administration.

2. Modify the Jserv mount points for the administration URL by setting

configuration options in the file jserv.conf in the directory $ORACLE_
HOME/Apache/Jserv/etc.

For a manager that runs manually, with autoDeploy set to false , add a new

path for a ApJServMount . For example,

ApJServMount /servlets /soap/admin/servlet

Run this with the URL,

http://hostname:port/soap/admin/servlet/soaprouter

For a manager that runs in auto mode, with autoDeploy set to true , add a

new path for a ApJServGroupMount . For example,

ApJServGroupMount /servlets /soap/admin/servlet

Run this with the URL,

http://hostname:port/soap/admin/servlet/soaprouter

3. Set security for the specified URL by setting configuration options in the file

httpd.conf in the directory $ORACLE_HOME/Apache/conf .

For example, if /soap/admin/servlet is set with secure access, you could

set requiredRequestURI to /soap/admin/servlet/soaprouter for the

ProviderManager and the ServiceManager .

Using Auto Start Mode
The SOAP Request Handler Servlet runs in auto mode or in non-auto mode. The

mode determines how the servlet is started.

In auto mode, a process manager within Apache starts the SOAP Request Handler

Servlet automatically and manages the process. In non-auto mode, the SOAP

Request Handler Servlet needs to be manually started.

Oracle SOAP is installed using the default mode, auto . To change the mode,

change the value for the ApJServManual configuration directive in the file

jserv.conf in the directory $ORACLE_HOME/Apache/Jserv/etc.
8-4 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Configuring Memory Options
Setting Jserv Configuration and Security
To set or update the list of IP addresses that is allowed to connect to Apache Jserv,

modify the security.allowedAddresses parameter in the file $ORACLE_
HOME/Apache/Jserv/etc/jservSoap.properties .

Changing the HTTP Listener Port Number
To set the port where the SOAP HTTP Listener runs, modify the Apache

configuration file, httpd.conf found in the directory $ORACLE_
HOME/Apache/Apache/conf .

You can view this file to determine the port where the Apache HTTP listener starts.

Configuring Memory Options
You can configure heap memory usage for the SOAP Request Handler Servlet in the

file jservSoap.properties . This file resides in the directory $ORACLE_
HOME/Apache/Jserv/etc on UNIX, or %ORACLE_HOME%\Apache\Jserv\etc
on Windows NT. If you receive java.lang.OutofMemory errors from the SOAP

Request Handler Servlet, increasing the heap size may solve this problem.

For example, to set the size of the SOAP Request Handler Servlet’s heap memory to

32 megabytes, use the following settings in jservSoap.properties :

wrapper.bin.parameters=-Xmx32m
wrapper.bin.parameters--Xms32m
SOAP Administration 8-5

Configuring Memory Options
8-6 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Apache Software License, Versio
A

Apache Software License, Version 1.1

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must

include the following acknowledgment:

 "This product includes software developed by the Apache Software

Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and

wherever such third-party acknowledgments normally appear.

4. The names "Apache" and "Apache Software Foundation" must not be used to

endorse or promote products derived from this software without prior written

permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may

"Apache" appear in their name, without prior written permission of the Apache

Software Foundation.

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
n 1.1 A-7

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE

FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on

behalf of the Apache Software Foundation. For more information on the Apache

Software Foundation, please see http://www.apache.org/.

Portions of this software are based upon public domain software originally written

at the National Center for Supercomputing Applications, University of Illinois,

Urbana-Champaign.
A-8 Oracle9i Application Server Oracle9iAS SOAP Developer’s Guide

Index

A
arrays

as service parameters, 3-12

audit logger

configuring, 4-5

filter, 4-2

HostName, 4-2

IpAddress, 4-2

Method element, 4-2

schema, 4-2

ServiceURI element, 4-2

TimeStamp element, 4-2

User element, 4-2

auditLogDirectory option, 4-6

auto mode, 8-4

B
BeanSerializer, 3-3

C
Call.invoke() method, 2-11

CLASSPATH

adding Java service to, 2-7

client API

executing, 2-12

security features, 2-13

configuration

auto mode, 8-4

handlers, 5-3

soapConfig.xml, 8-2

D
debugging

setting values in soapConfig.xml, 2-16

default encoding, 3-13

deploying services, 2-7, 3-6

deployment

descriptor, 2-6

java2XMLClassName, 3-7

javaType, 3-7

qname, 3-7

xml2JavaClassName, 3-7

E
encoding

literal XML, 3-6

standard SOAP v1.1, 3-6

error handlers, 5-2

error handling, 2-5

errorHandlers deployment parameter, 8-2

errors

Java service, 2-5

exception

logging, 2-5

executing a client, 2-12

F
fault

logging, 2-5

faultListeners deployment parameter, 8-2

filter option, 4-6
Index-1

H
handlers

deployment parameter, 8-2

error, 5-2

request, 5-2

response, 5-2

handling errors, 2-5

HostName element, 4-2

HTTP authentication, 2-12

HTTP proxies, 2-12

HTTP transport properties

http.authType property, 2-14

http.password property, 2-14

http.proxyAuthType property, 2-14

http.proxyHost property, 2-14

http.proxyPassword property, 2-14

http.proxyPort property, 2-14

http.proxyUsername property, 2-14

http.username property, 2-14

java.protocol. handler.pkgs property, 2-14

oracle. wallet.location property, 2-15

oracle.soap. transport. allowUserInteraction

property, 2-15

oracle.wallet. password property, 2-15

http.authType property, 2-14

http.password property, 2-14

http.proxyAuthType property, 2-14

http.proxyHost property, 2-14

http.proxyPassword property, 2-14

http.proxyPort property, 2-14

http.proxyUsername property, 2-14

http.username property, 2-14

I
includeRequest option, 4-6

includeResponse option, 4-6

IpAddress element, 4-2

J
Java service

adding class to CLASSPATH, 2-7

client imports, 2-9

defining a request, 2-9

deploying, 2-5

deployment descriptor, 2-6

developing a client, 2-8

parameters, 3-8

samples, 2-2

serializing, 2-3

writing, 2-3

java2XMLClassName deployment attribute, 3-7

JavaBeans

adding to the CLASSPATH, 3-4

support routines, 3-3

java.protocol. handler.pkgs property, 2-14

javaType deployment attribute, 3-7

JVM heap usage, 8-5

L
listing services, 2-8

logger

setting values in soapConfig.xml, 2-16

logger deployment parameter, 8-2

M
memory

configuring, 8-5

Method element, 4-2

N
non-auto mode, 8-4

O
Oracle SOAP, 1-6

oracle. wallet.location property, 2-15

oracle.soap. transport. allowUserInteraction

property, 2-15

oracle.wallet. password property, 2-15
Index-2

P
parameters

encoding, 3-9

mapping, 3-9

serialization, 3-9

provider interface

deployment information, 6-7

destroy() method, 6-6

getId() method, 6-6

implementing, 6-2

init() method, 6-3

invoke() method, 6-3

overview, 6-2

provider manager interface, 7-1

providerManager deployment parameter, 8-3

ProviderManager interface, 7-1

proxy authentication, 2-12

Q
qname deployment attribute, 3-7

querying services, 2-8

R
Request Handler Servlet

port, 8-5

request handlers, 5-2

requestHandlers deployment parameter, 8-3

response handlers, 5-2

responseHandlers deployment parameter, 8-3

results

serialization, 3-3

S
security

features, 2-13

HTTP authentication, 2-12

HTTP proxies, 2-12

jservSoap.properties, 8-5

proxy authentication, 2-12

security.allowedAddresses, 8-5

security.allowedAddresses, 8-5

server port, 8-5

service manager, 7-2

deploying services, 2-7

listing services, 2-8

querying services, 2-8

undeploying services, 2-7

verifying services, 2-8

serviceManager deployment parameter, 8-3

ServiceManager interface, 7-2

services

deploying, 2-5, 3-6

developing a client, 2-8

encoding, 3-6

errors, 2-5

faults, 2-5

Java API

Call object, 2-10

invoking a service, 2-11

Response object, 2-12

Java client API

parameters, 2-10

parameters, 3-3

undeploying, 2-5

user defined types, 3-2

using arrays, 3-12

using parameters, 3-2

ServiceURI element, 4-2

servlet.soaprouter.initArgs parameter, 8-2

simple object access protocol

what is SOAP, 1-2

SOAP

architecture, 1-3

client API

request, 2-10

configuration

soapConfig.xml, 8-2

features, 1-2

how does SOAP work, 1-3

Java service

encoding, 2-3

Oracle SOAP, 1-6

Oracle SOAP architecture, 1-6

passing parameters, 3-8

request handler, 1-9

server

port, 8-5
Index-3

services, 2-10

SOAP 1.1 specification, 1-3

transports, 1-8

troubleshooting, 2-15

W3C XML schema, 1-3

web services, 1-2

what is SOAP, 1-2

soapConfig.xml, 2-16, 8-2

soap.properties

soapConfig, 8-2

startup mode

auto, 8-4

non-auto, 8-4

T
TcpTunnelGui command, 2-16

TimeStamp element, 4-2

transports, 1-8

troubleshooting, 2-15

U
undeploying services, 2-7

user defined types

using, 3-2

User element, 4-2

using parameters, 3-2

using user defined types, 3-2

W
W3C XML schema, 1-3

web services, 1-2

X
xml2JavaClassName deployment attribute, 3-7
Index-4

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	1 Simple Object Access Protocol Overview
	What Is the Simple Object Access Protocol?
	How Does SOAP Work?
	Why Use SOAP?
	What Is Oracle SOAP?
	Client Application and Client API
	SOAP Client API
	Oracle SOAP Security Features

	SOAP Transports
	Administrative Clients
	SOAP Request Handler
	SOAP Provider Interface and Providers
	Provider Interface
	Provider Deployment Administration

	SOAP Services

	2 Using Oracle SOAP with Java Services
	Writing a SOAP Java Service
	Specifying a Package Name for the Service
	Defining Java Methods
	Serializing and Encoding Parameters and Results

	Returning a Result

	Deploying a SOAP Java Service
	Creating a Java Service Deployment Descriptor
	Adding Service Classes to the SOAP CLASSPATH
	Using the Service Manager to Deploy and Undeploy Java Services
	Using the Service Manager to Verify or Query Java Services

	Writing a SOAP Java Client
	Specifying a Package Name Java Clients
	Importing for Java Clients
	Defining a Request
	Setting Up a Call to Request a Service
	Serializing and Encoding Java Parameters and Results

	Invoking a Call to Request a Service
	Waiting for a Response and Handling SOAP Faults
	Running a Client
	Using Security Features with a Client

	SOAP Troubleshooting
	Tunneling Using the TcpTunnelGui Command
	Setting Configuration Options for Debugging
	Using DMS to Display Runtime Information

	3 SOAP Parameters and Encodings
	Writing a SOAP Java Service Using User-Defined Types
	Specifying a Package Name for the Service
	Defining Java Methods Using Parameters with User-Defined Types
	Serializing Java Parameters and Results Using BeanSerializer
	Writing JavaBean Support Routines for User-Defined Types
	Adding Compiled JavaBean Classes to the CLASSPATH

	Returning Results to the Request Handler Servlet
	Encoding Java Parameters and Results

	Deploying a SOAP Java Service Using User-Defined Types
	Developing a SOAP Java Client Using Parameters
	Creating Parameters to Pass to a Service
	Handling Encoding, Serialization, and Mapping with Parameters
	Setting Up a Call to Request a Service with Parameters
	Invoking a Call to Request a Service with Parameters
	Running a Client with Parameters

	Writing a SOAP Service Using Arrays as Parameters
	Server-Side Adjustments for Using Arrays as Parameters
	Client-Side Adjustments for Using Arrays as Parameters

	Writing a SOAP Service Using Literal XML Encoding
	Server-Side Adjustments for Using Literal XML Encoding
	Creating a Return Value with Literal XML Encoding

	Client-Side Adjustments for Using Literal XML Encoding
	Specifying a Call with Literal XML Encoding
	Invoking a Call with Literal XML Encoding

	4 SOAP Audit Logging
	Audit Logging Information
	Audit Logging Output

	Auditable Events
	Audit Logging Filters

	Configuring the Audit Logger

	5 SOAP Handlers
	Handler Overview
	Request Handlers
	Response Handlers
	Error Handlers
	Configuring Handlers

	6 Writing SOAP Providers
	Provider Interface Overview
	Implementing a Provider Interface
	Implementing Provider Interface Methods
	Working with the Provider init() Method
	Working with the Provider invoke() Method
	Working with the Provider destroy() Method
	Working with the Provider getId() Method

	Handling Provider Deployment
	Updating the Provider Deployment Descriptor Schema
	Updating the Service Deployment Descriptor Schema

	7 Writing Deployment Managers
	Creating a Provider Manager
	Creating a Service Manager

	8 SOAP Administration
	Configuring the Request Handler Servlet
	Setting Provider Manager and Service Manager Configuration Options

	Using Auto Start Mode
	Setting Jserv Configuration and Security
	Changing the HTTP Listener Port Number
	Configuring Memory Options

	A Apache Software License, Version 1.1
	Index

